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Summary: Lectures are oriented upon fundamentals of CFD and first of all to control 

volume methods (application using Fluent)

1. Applications. Aerodynamics. Drag coefficient. Hydraulic systems, Turbomachinery. Chemical engineering reactors, combustion.

2. Implementation CFD in standard software packages Fluent Ansys Gambit. Problem classification: compressible/incompressible. Types of PDE 

(hyperbolic, eliptic, parabolic) - examples.

3.Weighted residual Methods (steady state methods, transport equations). Finite differences, finite element, control volume and meshless methods.

4. Mathematical and physical requirements of good numerical methods: stability, boundedness, transportiveness. Order of accuracy. Stability analysis of 

selected schemes.

5. Balancing (mass, momentum, energy). Fluid element and fluid particle. Transport equations.

6. Navier Stokes equations. Turbulence. Transition laminar-turbulent. RANS models: gradient diffusion (Boussinesque). Prandtl, Spalart Alamaras, k-

epsilon, RNG, RSM. LES, DNS.

7. Navier Stokes equations solvers. Problems: checkerboard pattern. Control volume methods: SIMPLE, and related techniques for solution of pressure 

linked equations. Approximation of convective terms (upwind, QUICK). Techniques implemented in Fluent.

8. Applications: Combustion (PDF models), multiphase flows.

Comp.Fluid Dynamics 181107 2+2 

(Lectures+Tutorials), Exam, 4 credits  

CFD1

Room 366, first lecture 5.10.2018, 12:30-14:00

excellent     very good         good        satisfactory   sufficient       failed
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For more information about the CFD

course look at my web pages 

http://users.fs.cvut.cz/rudolf.zitny/
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Database of scientific articles:
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SCIENCE DIRECT CFD1

Specify topic by keywords (in a similar way 

like in google)

Title of paper is usually sufficient guide for 

selection.



Aerodynamics. Keywords “Drag coefficient CFD” (126 matches 2011 , 6464  2012, 7526 2013, 10900 2016 ) 

Keywords:“Racing car” (87 matches 2011), October 2015 172 articles for (Racing car CFD)

CFD Applications selected papers from Science DirectCFD1



Hydraulic systems (fuel pumps, injectors) Keyword “Automotive magnetorheological brake design” 

gives 36 matches (2010), 51 matches (2011,October). 63 matches (2012,October), 74 (2013) , 88 (2015) 

Example

CFD Applications selected papers from Science Direct
CFD1



Turbomachinery (gas turbines, turbocompressors)

Chemical engineering (reactors, combustion. Elsevier Direct, keywords “CFD 

combustion engine” 3951 papers in 2015. “CFD combustion engine spray injection droplets 

emission zone” 162 papers (2010), 262 articles (2011 October), 364 (October 2013). Examples of 

matches:

LES, non-premix, mixture fraction, Smagorinski subgrid scale turbulence model, laminar 

flamelets.  These topics will be discussed in more details in this course.

.

kinetic mechanism for iso-octane oxidation including 38 species and 69 elementary

reactions was used for the chemistry simulation, which could predict satisfactorily 

ignition timing, burn rate and the emissions of HC, CO and NOx for HCCI engine (Homogeneous 

Charge and Compression Ignition)

CFD Applications selected papers from Science Direct
CFD1

Keywords “two-zone combustion model piston engine” 2100 matches (October 2012), 2,385 (October 2013)



Environmental AGCM (atmospheric Global Circulation) finite differences and spectral methods, 

mesh 100 x 100 km, p (surface), 18 vertical layers for horizontal velocities, T, cH2O,CH4,CO2, radiation 

modules (short wave-solar, long wave – terrestrial), model of clouds. AGCM must be combined with 

OGCM (oceanic, typically 20 vertical layers). FD models have problems with converging grid at poles -

this is avoided by spectral methods. IPCC Intergovernmental Panel Climate Changes established by 

WMO World Meteorological Association.

Biomechanics, blood flow in arteries (structural + fluid problem)

CFD Applications selected papers from Science Direct
CFD1



Sport

CFD Applications selected papers from Science Direct
CFD1
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CFD Commertial softwareCFD1

Tutorials: ANSYS FLUENT

Bailey



CFD ANSYS Fluent (CVM), CFX, Polyflow (FEM)
CFD1

FLUENT = Control Volume Method

Incompressible/compressible

Laminar/Turbulent flows

POLYFLOW = Finite Element Method

Incompressible flows

Laminar flows

Newtonian fluids (air, water, oils…)

Turbulence models 

RANS (Reynolds averaging)

RSM  (Reynolds stress)

Viscoelastic fluids (polymers, rubbers…)

Differential models Oldroyd type (Maxwell, 

Oldroyd B, Metzner White), PTT, Leonov (structural 

tensors)

Integral models

Single and Multiphase flows 

Heat transfer & radiation

tensor of rate of tensor of 
deformationviscous stress
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Remark: CFX is in fact CVM but using FE 

technology (isoparametric shape functions 

in finite elements)



CFD1 Prerequisities: Tensors

Bailey



CFD operates with the following properties of fluids (determining state at point x,y,z):

Scalars T (temperature), p (pressure),  (density), h (enthalpy), cA (concentration), k (kinetic energy)

Vectors (velocity),          (forces),               (gradient of scalar)

Tensors (stress),            (rate of deformation),                (gradient of vector)

CFD1 Prerequisities: Tensors
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Scalars are determined by 1 number.

Vectors are determined by 3 numbers

Tensors are determined  by 9 numbers
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Scalars, vectors and tensors are independent of coordinate systems (they are objective properties). 

However, components of vectors and tensors depend upon the coordinate system. Rotation of axis has no 

effect upon vector (its magnitude and arrow direction), but coordinates of the vector are changed 

(coordinates ui are projections to coordinate axis).



Rotation of cartesian coordinate system
CFD1

Three components of a vector represent complete description (length of an arrow and its directions), 

but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian 

coordinate system is represented by transformation of the vector coordinates by the matrix product
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1 1 2 3

'

2 1 2 3

'

3 1 2 3

cos(1',1) cos(1', 2) cos(1',3)
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Rotation matrix (Rij

is cosine of angle between 

axis i’ and j’)
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Rotation of cartesian coordinate system
CFD1

Example: Rotation only along the axis 3 by the angle  (positive for counter-clockwise direction)

1
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Properties of goniometric functions 
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therefore the rotation matrix is orthogonal and can be inverted just only 

by simple transposition (overturning along the main diagonal). Proof:

a



CFD1 Stresses describe complete stress state at a point x,y,z
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Index of plane      index of force component          

(cross section)    (force acting upon the cross section i)



CFD1

Later on we shall use another tensors of the second order describing 

kinematics of deformation (deformation tensors, rate of deformation,…)

Nine components of a tensor represent complete description of state (e.g. distribution of 

stresses at a point), but these components depend upon the choice of coordinate system, the 

same situation like with vectors. The transformation of components corresponding to the 

rotation of the cartesian coordinate system is given by the matrix product

Tensor rotation of cartesian coordinate system

[[ ']] [[R]][[ ]][[R]]T 

cos(1',1) cos(1', 2) cos(1',3)

[[ ]] cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

R

 
 

  
 
 

where the rotation matrix [[R]] is the same as previously
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CFD1 Special tensors
Kronecker delta (unit tensor)

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)

In term of epsilon tensor vector product will be defined

http://upload.wikimedia.org/wikipedia/commons/d/d6/Levi-Civita_Symbol_cen.png
http://upload.wikimedia.org/wikipedia/commons/d/d6/Levi-Civita_Symbol_cen.png
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Levi-Civita_symbol
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CFD1 Scalar product

Scalar product (operator ) of two vectors is a scalar
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aibi is abbreviated Einstein notation (repeated indices are summing indices)

Scalar product can be applied also between tensors or 

between vector and tensor

i-is summation (dummy) index, while j-is 

free index

This case explains how it is possible to 

calculate internal stresses acting at an 

arbitrary cross section (determined by outer 

normal vector n) knowing the stress tensor.



CFD1 Scalar product

Derive dot product 

of delta tensor!

Define double dot 

product!
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CFD1 Vector product
Scalar product (operator ) of two vectors is a scalar. Vector  product (operator x)  of 

two vectors is a vector.

For example

a


c




Vector productCFD 1

F


Moment of force (torque) FrM







 umF 2

Coriolis force 


u


F


application: Coriolis flowmeter

Examples of applications
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CFD1 Differential operator 

Symbolic operator  represents a vector of first derivatives with respect x,y,z. 

 applied to scalar is a vector (gradient of scalar)
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 applied to vector is a tensor (for example gradient of velocity is a tensor)
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GRADIENT



source  0 u
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sink  0 u


CFD1 Differential operator 

Scalar product  represents intensity of source/sink of a vector quantity at a point

i-dummy index, result is a scalar
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DIVERGENCY

Scalar product  can be applied also to a tensor giving a vector (e.g. source/sink 

of momentum in the direction x,y,z)

onconservati  0 u




CFD1 Differential operator 

volume of 
resulting surface force cube
acting to small cube

/xx x y z x y z
x





       



DIVERGENCY of stress tensor
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(special case with only one non zero component xx )
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CFD1 Laplace operator 2

Scalar product =2 is the operator of second derivatives (when applied to scalar 

it gives a scalar, applied to a vector gives a vector,…). Laplace operator is 

divergence of a gradient (gradient temperature, gradient of velocity…)
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Laplace operator describes diffusion processes, dispersion of temperature, 

concentration, effects of viscous forces. 

i-dummy index



Laplace operator 2MHMT1
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Negative value of 2T 

tries to suppress the peak 

of the temperature profile

Positive value of 2T 

tries to enhance the 

decreasing part

T
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CFD1 Symbolic  indicial notation

General procedure how to rewrite symbolic formula to index 

notation

Replace each arrow by an empty place for index

Replace each vector operator by  -   

Replace each dot  by a pair of dummy indices in the first free position left and right

Write free indices into remaining positions

Practice examples!!
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CFD1 Orthogonal coordinates

Previous formula hold only in a cartesian coordinate systems

Cylindrical and spherical systems require transformations
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Using this it is possible to express the same derivatives in different coordinate 

systems, for example
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CFD1 Orthogonal coordinates

Transformation of unit vectors
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Example: gradient of temperature can written in any of the following ways
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follows from transformation of unit 

vectors

follows from transformation of 

derivatives (previous slide)
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CFD1 Integral theorems

Gauss




 dundu
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Green (generalised per partes integration)
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