copi Computer Fluid Dynamics

General information about CFD course, prerequisities (tenzor calculus)

Remark: foils with „black background" could be skipped, they are aimed to the more advanced courses

- Evaluation

A	B	C	D	E	F
$90+$	$80+$	70_{+}	$60+$	$50+$. .49

Summary: Lectures are oriented upon fundamentals of CFD and first of all to control volume methods (application using Fluent)

[^0](E181107) Computational Fluid Dynamics / FS

For more information about the CFD	Prijmeni	Jméno
	Kohout	Petr
	Mysliveček	Matēj
course look at my wed pages	Skoupy	Pavel
htto://users.fs.cvut.cz/rudolf.zitny/	Královec	Václav
n/.//users.fs.cvut.cz/rudolf.zitny/	Dobos	Botond
	Kim	Yuin
	Gungor	Ogul Can
	Sutar	Abhijeet
	Dör	Tony
	Treutlein	Leander
	Pellegrin	Charles
	Piot	Alexandre
	Matia	Tomás
	Ramakrishnan Sundareswaran	Sharan
	Bawkar	Shubham
	Subhasit	Pratyush
	Singh	Aayush
	Datta	Shouvik
	Ayyagari	Praneet
	Patel	Yash
	Kamal	Naman
	Kannan	Manojprivadharson
	Kar	Anurag
	Udumalpet Kannan	Vinit
	Ansari	Mohammed Aquib Jamal
	Ramidi	Vishwas Reddy
	Balasubramanian	Karthick
	Senghani	Abhishek Vijay
	Muller	Loic
	Patel	Jaykishan Harishbhai
	Pawar	Pawan Dasharath
	Sekar	Sivaprasadh
	Koduru	Vinay Kiran
	Akköse	Samed Ali
	Balachandran	Praveen Kumar

coll LITERATURE

- Books:

Versteeg H.K., Malalasekera W.:An introduction to CFD, Prentice Hall,1995
Date A.W.:Introduction to CFD. Cambridge Univ.Press, 2005
Anderson J.: CFD the basics and applications, McGraw Hill 1995
Tu J.et al: CFD a practical approach. Butterworth Heinemann 2ndEd. 2013

Database of scientific articles:

Students of CTU have direct access to full texts of thousands of papers, at knihovny.cvut.cz or directly as https://dialog.cvut.cz

Informační
Brána EIZ

Prosím, vyberte si svou univerzitu: České vysoké učení technické v Praze \quad >>
Přihlašovací údaje:
Uživatelské jméno: zitnyrud
Heslo ČVUT:

Přistupujte k informačním zdrojủm i jiným způsobem:

CFD1
 DATABASE selection

CFD1

SCIENCE DIRECT

-- vyberte si informační zdroj --	237 articles found for
-wyberte si informační zdroj -	Save Search $1 \bigcirc$ Save as
IEEE - IET (IEEEXplore)	
IEEE Computer Society Digital Lib	
eb of Knowledge (WoS)	Search Within Results:
Journal Citation Reports	
Scopus	
MathSci	
MIT CogNet	Refine Results Limit To
Physical Review Online Archive (P Springer Link Lecturo Notec in Computer Scienc	Content Type
	\square Journal (180)
Science Direct (Elsevied $\quad \square$ Book (8)	
10 P Sclence	
InterScience (Wiley)	
Wiley Encyclopedia of Medical Devices and Instrumentation	
EBSCOhost	
The ACM Digital Library	
Computer Science Library	
Lecture Notes in Mathematics	
Pacific Journal of Mathematics	
Ebrary (trial do 21. 6.)	
RefWorks - Personal Database and Bibliography Creator	
360 Search - Metavyhledavac	
360 Search (in English)	
Ebsco - Integrated Search (trial do 30.6.2010)	
E-Journal Portal	

Save Search $1 \bigcirc$ Save as Search Alert| 1 RSS Feed

ISI Web of Knowledge (WoS) Journal Citation Reports Scopus
MathSci

CogNet

Springer Link
Lecture Notec in Computer Scienc
Science Direct (Elsevier)

oP Sclence

Sience (Wiley)
Wiley Encyclopedia of Medical Devices and Instrumentation EBSCOhost
俍
Computer Science Library
Lecture Notes in Mathematics
Ebrary (trial do 21. 6.)
RefWorks - Personal Database and Bibliography Creator
360 Search - Metavyhledavac
360 Search (in English)
E-Journal Portal

237 articles found for: ALL(heat exchanger design TEMA)

Specify topic by keywords (in a similar way like in google)

CFD1

CFD Applications seseceted poperst tom science Direct

$>$ Aerodynamics. Keywords "Drag coefficient CFD" (126 matches 2011, 6464 2012, 7526 2013, 109002016)
\square Development and validation of a new drag law using mechanical energy balance approach for DEM-CFD simulation of gas
-solid fluidized bed Original Research Article
Chemical Engineering Journal, Volume 302, 15 October 2016, Pages 395-405
O.O. Ayeni, C.L. Wu, K. Nandakumar, J.B. Joshi

- Abstract Research highlights 츠 PDF (2264 K)
\square A following car influences cyclist drag: CFD simulations and wind tunnel measurements Original Research Article Journal of Wind Engineering and Industrial Aerodynamics, Volume 145, October 2015, Pages 178-186
Bert Blocken, Yasin Toparlar
- Abstract - Graphical abstract Research highlights 즈 PDF (4359 K)

standard $k-\varepsilon$ model was made based on a previous extensive validation study for the aerodynamics of a single cyclist, including the standard, realizable and Re-normalization Group (RNG) $k-\varepsilon$ model, the standard $k-\omega$ model, the Shear-Stress Transport (SST) $k-\omega$ model and Large Eddy Simulation. This study, reported in

Keywords:"Racing car" (87 matches 2011), October 2015172 articles for (Racing Car CFD)

$2 \square$ EFD study of section characteristics of Formula Mazda race car wings Original Research Art Mathematical and Computer Modelling, Volume 43, Issues 11-12, June 2006, Pages 1275-128 W. Kieffer, S. Moujaes, N. Armbya

I Show preview | $\mathrm{CDDF}(2411 \mathrm{KI} \mid$ Related articles | Related reference work articles

Aeronautical CFD in the age of Petaflops-scale computing: From unstructured to Cartesian meshes European Journal of Mechanics - B/Fluids, Volume 40, July-August 2013, Pages 75-86 3. Incompressible Navier-Stokes result showing u-velocity distribution and
lines around a formula-1 1 car model [43]. Total number of cubes is 5930 and Kazuhiro Nakahashi

CFD1 CFDApplications selected papers from Science Direct

-Hydraulic systems (fuel pumps, injectors) Keyword "Automotive magnetorheological brake design" gives 36 matches (2010), 51 matches (2011,October). 63 matches (2012,October), 74 (2013), 88 (2015) Example

1ㄷ 目
Design considerations for an automotive magnetorheological brake Original Research Article Mechatronics, Volume 18, Issue 8, October 2008, Pages 434-447 Kerem Karakoc, Edward J. Park, Afzal Suleman

Show preview | $\overline{\mathrm{Z}}$ PDF (2785 K) | Related articles | Related reference work articles
Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic
field Original Research Article
Computers \& Fluids, Volume 63, 30 June 2012, Pages 128-134
Engin Gedik, Hüseyin Kurt, Ziyaddin Recebli, Corneliu Balan

- Abstract Draphical abstract BDF (1052 K)

CFD1

CFD Applications sesecected ppepest tom sterne o direct

$>$ Turbomachinery (gas turbines, turbocompressors)
Experimental and numerical investigation of a propane-fueled, catalytic mesoscale combustor Original Research Article
Catalysis Today, Volume 155, Issues 1-2, 1 October 2010, Pages 108-115 Symeon Karagiannidis, Kimon Marketos, John Mantzaras, Rolf Schaeren, Konstantinos Boulouchos

Show preview | 즈 PDF $(600 \mathrm{~K})$ | Related articles | Related reference work articles

$>$ Chemical engineering (reactors, combustion. Elsevier Direct, keywords "CFD combustion engine" 3951 papers in 2015. "CFD combustion engine spray injection droplets emission zone" 162 papers (2010), 262 articles (2011 October), 364 (October 2013). Examples of
$3 \square$ E Modelling of instabilities in turbulent swirling flames Original Research Article Fuel, Volume 89, Issue 1, January 2010, Pages 10-18
K.K.J. Ranga Dinesh, K.W. Jenkins, M.P. Kirkpatrick, W. Malalasekera

LES, non-premix, mixture fraction, Smagorinski subgrid scale turbulence model, laminar flamelets. These topics will be discussed in more details in this course.

Keywords "two-zone combustion model piston engine" 2100 matches (October 2012), 2,385 (October 2013)
1■ E Simulation of a porous medium (PM) engine using a two-zone combustion model Original Research Article Applied Thermal Engineering, Volume 29, Issues 14-15, October 2009, Pages 3189-3197 Hongsheng Liu, Maozhao Xe, Dan Wu

Show preview | 즈 PDF (685 K) | Related articles | Related reference work articles
kinetic mechanism for iso-octane oxidation including 38 species and 69 elementary reactions was used for the chemistry simulation, which could predict satisfactorily ignition timing, burn rate and the emissions of HC, CO and NOx for HCCI engine (Homog
-Environmental AGCM (atmospheric Global Circulation) finite differences and spectral methods, mesh $100 \times 100 \mathrm{~km}, \mathrm{p}$ (surface), 18 vertical layers for horizontal velocities, $\mathrm{T}, \mathrm{cH}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}_{2}$, radiation modules (short wave-solar, long wave - terrestrial), model of clouds. AGCM must be combined with OGCM (oceanic, typically 20 vertical layers). FD models have problems with converging grid at poles this is avoided by spectral methods. IPCC Intergovernmental Panel Climate Changes established by WMO World Meteorological Association.

```
16
    Numerical weather prediction Original Research Article
    Journal of Wind Engineering and Industrial Aerodynamics, Volume 90, Issues 12-15, December 2002, Pages 1403-
    1414
    Ryuji Kimura
        Show preview | {.) PDF (557 K) | Related articles | Related reference work articles
```

$>$ Biomechanics, blood flow in arteries (structural + fluid problem)
1■ 目 Steady and unsteady flow within an axisymmetric tube dilatation Original Research Article Experimental Thermal and Fluid Science, Volume 34, Issue 7, October 2010, Pages 915-927 Ch. Stamatopoulos, Y. Papaharilaou, D.S. Mathioulakis, A. Katsamouris

- Show preview | Z

CFD1 CFD Applications selected papers from science Direct

>Sport

```
1■ E CFD in Sport - a Retrospective; 1992-2012 Original Research Article
Procedia Engineering, Volume 34, 2012, Pages 622-627
R. Keith Hanna
Show preview | # PDF (571 K) | Related articles | Related reference work articles
```


Tutorials: ANSYS FLUENT

Bailey

Single and Multiphase flows

Heat transfer \& radiation

Remark: CFX is in fact CVM but using FE technology (isoparametric shape functions in finite elements)

FLUENT = Control Volume Method Incompressible/compressible Laminar/Turbulent flows

Newtonian fluids (air, water, oils...)

$$
\overrightarrow{\vec{\tau}} \quad=2 \mu \quad \overrightarrow{\vec{\Delta}}
$$

tensor of
viscous stress
tensor of rate of deformation

Turbulence models
RANS (Reynolds averaging) $\quad \mu=\mu($ turbulence $)$
RSM
(Reynolds stress)
$\frac{D \overrightarrow{\vec{\tau}}}{D t}=\overrightarrow{\vec{f}}($ turbulence $)$

POLYFLOW = Finite Element Method

Incompressible flows
Laminar flows

Viscoelastic fluids (polymers, rubbers...)
Differential models oldroyd type (Maxwell, Oldroyd B, Metzner White), PTT, Leonov (structural tensors)

$$
\lambda \frac{\delta \overrightarrow{\vec{\tau}}}{\delta t} \quad+g \overrightarrow{\vec{\tau}}=2 \mu \overrightarrow{\vec{\Delta}}
$$

Jaumann time derivative
Integral models $\overrightarrow{\vec{\tau}}=\int_{0}^{\infty} M(s) \underbrace{\vec{C}(t-s)}_{\substack{\text { Cauchy Green } \\ \text { deformation tensor }}} d s$

copl Prerequisities: Tensors

Prerequisities: Tensors

CFD operates with the following properties of fluids (determining state at point x, y, z):
Scalars T (temperature), p (pressure), ρ (density), h (enthalpy), $c_{\text {A }}$ (concentration), k (kinetic energy)
Vectors $\overrightarrow{\boldsymbol{u}}$ (velocity), \vec{f} (forces), $\quad \nabla T$ (gradient of scalar)
Tensors $\quad \overrightarrow{\vec{\tau}} \quad \overrightarrow{\vec{\sigma}}$ (stress), $\quad \overrightarrow{\vec{\Delta}}$ (rate of deformation), $\quad \nabla \vec{u}$ (gradient of vector)

Scalars are determined by 1 number.
Vectors are determined by 3 numbers

$$
\begin{aligned}
& \vec{u}=\left(u_{x}, u_{y}, u_{z}\right)=\left(u_{1}, u_{2}, u_{3}\right) \\
& \overrightarrow{\vec{\sigma}}=\left(\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)
\end{aligned}
$$

Scalars, vectors and tensors are independent of coordinate systems (they are objective properties). However, components of vectors and tensors depend upon the coordinate system. Rotation of axis has no effect upon vector (its magnitude and arrow direction), but coordinates of the vector are changed (coordinates u_{i} are projections to coordinate axis).

Rotation of cartesian coordinate system

Three components of a vector represent complete description (length of an arrow and its directions), but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian coordinate system is represented by transformation of the vector coordinates by the matrix product

$$
\begin{aligned}
& a_{1}^{\prime}=a_{1} \cos \left(1^{\prime}, 1\right)+a_{2} \cos \left(1^{\prime}, 2\right)+a_{3} \cos \left(1^{\prime}, 3\right) \\
& a_{2}^{\prime}=a_{1} \cos \left(2^{\prime}, 1\right)+a_{2} \cos \left(2^{\prime}, 2\right)+a_{3} \cos \left(2^{\prime}, 3\right) \\
& a_{3}^{\prime}=a_{1} \cos \left(3^{\prime}, 1\right)+a_{2} \cos \left(3^{\prime}, 2\right)+a_{3} \cos \left(3^{\prime}, 3\right)
\end{aligned}
$$

$$
\left(\begin{array}{l}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(1^{\prime}, 1\right) & \cos \left(1^{\prime}, 2\right) & \cos \left(1^{\prime}, 3\right) \\
\cos \left(2^{\prime}, 1\right) & \cos \left(2^{\prime}, 2\right) & \cos \left(2^{\prime}, 3\right) \\
\cos \left(3^{\prime}, 1\right) & \cos \left(3^{\prime}, 2\right) & \cos \left(3^{\prime}, 3\right)
\end{array}\right) \cdot\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

$\left[a^{\prime}\right]=[[\mathrm{R}]][a]$

Rotation matrix (R_{ij} is cosine of angle between

Rotation of cartesian coordinate system

Example: Rotation only along the axis 3 by the angle $\boldsymbol{\varphi}$ (positive for counter-clockwise direction)
Properties of goniometric functions $\quad \cos (-\varphi)=\cos \varphi \quad \cos \left(\frac{\pi}{2}-\varphi\right)=\sin \varphi \quad \cos \left(-\left(\frac{\pi}{2}+\varphi\right)\right)=-\sin \varphi$

$$
\binom{a_{1}^{\prime}}{a_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \left(1^{\prime}, 1\right)=\cos \varphi & \cos \left(1^{\prime}, 2\right)=\sin \varphi \\
\cos \left(2^{\prime}, 1\right)=-\sin \varphi & \cos \left(2^{\prime}, 2\right)=\cos \varphi
\end{array}\right) \cdot\binom{a_{1}}{a_{2}}
$$

$$
[[\mathrm{R}]]^{T}[[\mathrm{R}]]=\left[[\mathrm{II}] \rightarrow[[\mathrm{R}]]^{-1}=[[R]]^{T}\right.
$$

therefore the rotation matrix is orthogonal and can be inverted just only by simple transposition (overturning along the main diagonal). Proof:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cos ^{2} \varphi+\sin ^{2} \varphi & \cos \varphi \sin \varphi-\sin \varphi \cos \varphi \\
\sin \varphi \cos \varphi-\cos \varphi \sin \varphi & \sin ^{2} \varphi+\cos ^{2} \varphi
\end{array}\right)= \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

CFD1 SHESSASA describe complete stress state at a point x, y, z

index of force component
(cross section) (force acting upon the cross section i)

Later on we shall use another tensors of the second order describing kinematics of deformation (deformation tensors, rate of deformation,...)

Nine components of a tensor represent complete description of state (e.g. distribution of stresses at a point), but these components depend upon the choice of coordinate system, the same situation like with vectors. The transformation of components corresponding to the rotation of the cartesian coordinate system is given by the matrix product

$$
\left[\left[\sigma^{\prime}\right]\right]=[[R]][[\sigma]][[R]]^{T}
$$

where the rotation matrix $[[R]]$ is the same as previously

$$
[[R]]=\left(\begin{array}{ccc}
\cos \left(1^{\prime}, 1\right) & \cos \left(1^{\prime}, 2\right) & \cos \left(1^{\prime}, 3\right) \\
\cos \left(2^{\prime}, 1\right) & \cos \left(2^{\prime}, 2\right) & \cos \left(2^{\prime}, 3\right) \\
\cos \left(3^{\prime}, 1\right) & \cos \left(3^{\prime}, 2\right) & \cos \left(3^{\prime}, 3\right)
\end{array}\right)
$$

CFD1
 Special tensors

Kronecker delta (unit tensor)

$$
\begin{array}{ll}
\delta_{i j}=0 \text { for } i \neq j \\
\delta_{i j}=1 \text { for } i=j
\end{array} \quad \overrightarrow{\vec{\delta}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)
$\varepsilon_{i j k}= \begin{cases}+1 & \text { if }(i, j, k) \text { is }(1,2,3),(3,1,2) \text { or }(2,3,1), \\ -1 & \text { if }(i, j, k) \text { is }(1,3,2),(3,2,1) \text { or }(2,1,3), \\ 0 & \text { otherwise: } i=j \text { or } j=k \text { or } k=i,\end{cases}$

In term of epsilon tensor vector product will be defined

Scalar product

Scalar product (operator •) of two vectors is a scalar

$$
\vec{a} \bullet \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sum_{i=1}^{3} a_{i} b_{i}=a_{i} b_{i}
$$

Scalar product can be applied also between tensors or between vector and tensor

$$
\vec{n} \cdot \vec{\sigma}=\vec{f} \quad \sum_{\vec{i}=1}^{3} n_{i} \sigma_{i j}=n_{i} \sigma_{\bar{i}}=f_{j}
$$

i-is summation (dummy) index, while j -is free index

This case explains how it is possible to calculate internal stresses acting at an
 arbitrary cross section (determined by outer normal vector n) knowing the stress tensor.

Scalar product

Derive dot product of delta tensor!

Define double dot product!

CFD1
 Vector product

Scalar product (operator •) of two vectors is a scalar. Vector product (operator x) of two vectors is a vector.

$$
\begin{aligned}
& \vec{c}=\vec{a} \times \vec{b}=(\overrightarrow{\vec{\varepsilon}} \bullet \vec{b}) \bullet \vec{a} \\
& c_{i}=\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} a_{j} b_{k}=\varepsilon_{i j k} a_{j} b_{k}
\end{aligned}
$$

For example

$$
c_{1}=\varepsilon_{123} a_{2} b_{3}+\varepsilon_{132} a_{3} b_{2}=a_{2} b_{3}-a_{3} b_{2}
$$

CFD 1
 Vector product

Examples of applications

Moment of force (torque) $\vec{M}=\vec{r} \times \vec{F}$

Coriolis force

$$
\vec{F}=2 m \vec{u} \times \vec{\omega}
$$

application: Coriolis flowmeter

CFD1
 Differential operator ∇

GRADIENT

Symbolic operator ∇ represents a vector of first derivatives with respect x, y, z.

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right) \quad \nabla_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}
$$

∇ applied to scalar is a vector (gradient of scalar)

$$
\nabla T=\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) \quad \nabla_{i} T=\frac{\partial T}{\partial x_{i}}
$$

∇ applied to vector is a tensor (for example gradient of velocity is a tensor)

$$
\nabla \vec{u}=\left(\begin{array}{lll}
\frac{\partial u_{x}}{\partial x} & \frac{\partial u_{y}}{\partial x} & \frac{\partial u_{z}}{\partial x} \\
\frac{\partial u_{x}}{\partial y} & \frac{\partial u_{y}}{\partial y} & \frac{\partial u_{z}}{\partial y} \\
\frac{\partial u_{x}}{\partial z} & \frac{\partial u_{y}}{\partial z} & \frac{\partial u_{z}}{\partial z}
\end{array}\right) \quad \nabla_{\mathrm{i}} u_{j}=\frac{\partial u_{j}}{\partial x_{i}}
$$

Differential operator ∇

DIVERGENCY

Scalar product $\nabla \bullet$ represents intensity of source/sink of a vector quantity at a point

$$
\nabla \bullet \vec{u}=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}=\sum_{i=1}^{3} \frac{\partial u_{i}}{\partial x_{i}}=\frac{\partial u_{i}}{\partial x_{i}}{ }_{i} \text {-dummy index, result is a scalar }
$$

Scalar product $\nabla \bullet$ can be applied also to a tensor giving a vector (e.g. source/sink of momentum in the direction x, y, z)
$\vec{f}=\nabla \bullet \overrightarrow{\vec{\sigma}}=\left(\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z}, \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z}, \frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}\right) \quad \mathrm{f}_{\mathrm{i}}=\nabla_{\mathrm{j}} \sigma_{j i}$

CFD1
 Differential operator ∇

DIVERGENCY of stress tensor

(special case with only one non zero component $\sigma_{x x}$)

$$
\left(\sigma_{x x}-\frac{\partial \sigma_{x x}}{\partial x} \frac{\Delta x}{2}\right) \Delta y \Delta z \xrightarrow{\circ \longrightarrow} \underset{\longrightarrow}{~\left(\sigma_{x x}+\frac{\partial \sigma_{x x}}{\partial x} \frac{\Delta x}{2}\right) \Delta y \Delta z}
$$

$$
\nabla \bullet \vec{\sigma}=\underbrace{\frac{\partial \sigma_{x x}}{\partial x} \Delta x \Delta y \Delta z}_{\begin{array}{c}
\text { resslting surface force } \\
\text { acting to small cube }
\end{array}} / \underbrace{\Delta x \Delta y \Delta z}_{\begin{array}{c}
\text { volume of } \\
\text { cube }
\end{array}}
$$

La刀12ce orergtor ² 2

Scalar product $\nabla \bullet \nabla=\nabla^{2}$ is the operator of second derivatives (when applied to scalar it gives a scalar, applied to a vector gives a vector,...). Laplace operator is divergence of a gradient (gradient temperature, gradient of velocity...)

$$
\begin{aligned}
& \nabla \bullet \nabla T=\nabla^{2} T=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=\frac{\partial^{2} T}{\partial x_{i} \partial x_{i}} \\
& \nabla \bullet \nabla \vec{u}=\left(\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{x}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial z^{2}}, \frac{\partial^{2} u_{y}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial y^{2}}+\frac{\partial^{2} u_{y}}{\partial z^{2}}, \frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)=\sum_{i=1}^{3} \frac{\partial^{2} u_{j}}{\partial x_{i}^{2}}=\frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{i}}
\end{aligned}
$$

Laplace operator describes diffusion processes, dispersion of temperature, concentration, effects of viscous forces.

Laplace operator ∇^{2}

Symbolic \rightarrow indicial notation

General procedure how to rewrite symbolic formula to index notation
$>$ Replace each arrow by an empty place for index
$>$ Replace each vector operator by $-\bullet \varepsilon \bullet$
$>$ Replace each dot • by a pair of dummy indices in the first free position left and right
$>$ Write free indices into remaining positions

Practice examples!!

Orthogonal coordinates

Previous formula hold only in a cartesian coordinate systems
Cylindrical and spherical systems require transformations

$$
\begin{aligned}
& x_{1}=r c \\
& x_{2}=r s \\
& x_{3}=z
\end{aligned}\left(\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
c & -r s & 0 \\
s & r c & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
d r \\
d \varphi \\
d z
\end{array}\right) \quad\left(\begin{array}{l}
d r \\
d \varphi \\
d z
\end{array}\right)=\left(\begin{array}{ccc}
c & s & 0 \\
\frac{s}{r} & -\frac{c}{r} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right)
$$

where $s=\sin \varphi \quad c=\cos \varphi$
Using this it is possible to express the same derivatives in different coordinate systems, for example

$$
\begin{aligned}
& \frac{\partial T}{\partial x_{1}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{1}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{1}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{1}}=\frac{\partial T}{\partial r} c+\frac{\partial T}{\partial \varphi} \frac{s}{r} \\
& \frac{\partial T}{\partial x_{2}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{2}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{2}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{2}}=\frac{\partial T}{\partial r} s-\frac{\partial T}{\partial \varphi} \frac{c}{r} \\
& \frac{\partial T}{\partial x_{3}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{3}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{3}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{3}}=\frac{\partial T}{\partial z} s
\end{aligned}
$$

CFD1
 Orthogonal coordinates

Transformation of unit vectors

$$
\left(\begin{array}{l}
\vec{e}_{r} \\
\vec{e}_{\varphi} \\
\vec{e}_{z}
\end{array}\right)=\left(\begin{array}{ccc}
c & s & 0 \\
-s & c & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\vec{i}_{1} \\
\vec{i}_{2} \\
\vec{i}_{3}
\end{array}\right) \quad\left(\begin{array}{l}
\vec{i}_{1} \\
\vec{i}_{2} \\
\vec{i}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
c & -s & 0 \\
s & c & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\vec{e}_{r} \\
\vec{e}_{\varphi} \\
\vec{e}_{z}
\end{array}\right)
$$

Example: gradient of temperature can written in any of the following ways

CFD1
 Integral theorems

$$
\begin{aligned}
& \text { Gauss } \quad \iint_{\Omega} \nabla \cdot \vec{u} d \Omega=\int_{\Gamma} \vec{n} \cdot \vec{u} d \Gamma \\
& \iint_{\Omega}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right) d x d y=\int_{\Gamma}\left(u_{x} n_{x}+u_{y} n_{y}\right) d \Gamma
\end{aligned}
$$

Green (generalised per partes integration)
$\iint_{\Omega}\left(\nabla^{2} u\right) v d \Omega=-\iint_{\Omega}(\nabla u) \cdot(\nabla v) d \Omega+\int_{\Gamma}(\vec{n} \cdot \nabla u) v d \Gamma$

$$
\int_{a}^{b} \frac{d^{2} u}{d x^{2}} v d x=-\int_{a}^{b} \frac{d u}{d x} \frac{d v}{d x} d x+\left[v \frac{d u}{d x}\right]_{a}^{b}
$$

[^0]: 1. Applications. Aerodynamics. Drag coefficient. Hydraulic systems, Turbomachinery. Chemical engineering reactors, combustion.
 2. Implementation CFD in standard software packages Fluent Ansys Gambit. Problem classification: compressible/incompressible. Types of PDE (hyperbolic, eliptic, parabolic) - examples.
 3.Weighted residual Methods (steady state methods, transport equations). Finite differences, finite element, control volume and meshless methods.
 3. Mathematical and physical requirements of good numerical methods: stability, boundedness, transportiveness. Order of accuracy. Stability analysis of selected schemes.
 4. Balancing (mass, momentum, energy). Fluid element and fluid particle. Transport equations.
 5. Navier Stokes equations. Turbulence. Transition laminar-turbulent. RANS models: gradient diffusion (Boussinesque). Prandtl, Spalart Alamaras, kepsilon, RNG, RSM. LES, DNS.
 6. Navier Stokes equations solvers. Problems: checkerboard pattern. Control volume methods: SIMPLE, and related techniques for solution of pressure linked equations. Approximation of convective terms (upwind, QUICK). Techniques implemented in Fluent.
 7. Applications: Combustion (PDF models), multiphase flows.
