

Balancing, transport equations

Remark: foils with „black background" could be skipped, they are aimed to the more advanced courses

cro4 Balancing

CFD is based upong conservation laws

-conservation of mass
-conservation of momentum m.du/dt=F (second Newton.s law)
-conservation of energy $\mathrm{dq}=\mathrm{du}+\mathrm{pdv}$ (first law of thermodynamics)

System is considered as continuum and described by macroscopic variables \vec{u}, p, ρ, h

CFD4 Integral balancing - Gauss

Control volume balance expressed by Gauss theorem accumulation = flux through boundary

Variable \boldsymbol{P} can be

$>$ Vector (vector of velocity, momentum, heat flux). Surface integral represents flux of vector in the direction of outer normal.
$>$ Tensor (tensor of stresses). In this case the Gauss theorem represents the balance between inner stresses and outer forces acting upon the surface, in view of the fact that $\vec{n} \bullet \vec{\sigma} d \Gamma=d \vec{f} \quad$ is the vector of forces acting on the oriented surface $\mathrm{d} \Gamma$.

cFD4 Fluid ELEMENT

Motion of fluid is described either by
> Lagrangian coordinate system (tracking individual particles along streamlines)

- Eulerian coordinate system (fixed in space, flow is characterized by velocity field)

Balances in Eulerian description are based upon identification of fluxes through sides of a box (FLUID ELEMENT) fixed in space. Sides if the box in the 3D case are usually marked by letters $W / E, S / N$, and B / T.

CFD4 Mass balancing (fluid element)

$$
\left.=\left[\rho u-\frac{1}{2} \frac{\partial \rho u}{\partial x} \delta x\right)-\left(\rho u+\frac{1}{2} \frac{\partial \rho u}{\partial x} \delta x\right)\right] \delta y \delta z+\ldots=-\frac{\partial \rho u}{\partial x} \delta x \delta y \delta z-\ldots
$$

CFD4 Mass balancing

Continuity equation written in index notation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{i}}{\partial x_{i}}=0
$$

Continuity equation written in symbolic form

$$
\frac{\partial \rho}{\partial t}+\nabla \bullet(\rho \vec{u})=0 \quad \frac{\partial \rho}{\partial t}+\operatorname{div}(\rho \vec{u})=0
$$

Symbolic notation is independent of coordinate system. For example in the cylindrical coordinate system (r, φ, z) this equation looks different

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial r}+\frac{\rho u}{r}+\frac{1}{r} \frac{\partial \rho v}{\partial \varphi}+\frac{\partial \rho w}{\partial z}=0
$$

cFo4 Fluid PARTICLE / ELEMENT

Fluid element - a control volume fixed in space (filled by fluid)
Fluid particle - group of molecules at a point, characterized by property Φ (related to unit mass)

Rate of change of property $\Phi(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$ during the fluid particle motion

cros Transported property Φ

	Φ related to unit mass	$\rho \Phi$ related to unit volume ($\rho \Phi$ is balanced in the fluid element)	Diffusive fux of property Φ through unit surface
Mass	1	ρ	
Momentum	\vec{u}	$\rho \vec{u}$	$\vec{\sigma}$ Tensor of viscous stresses [Pa
Total energy	E	ρE	\vec{q} Heat flux [W/m²]
Mass fraction of a component in mixture	$\omega_{\text {A }}$	$\rho \omega_{\text {A }}$	\vec{j} diffusion flux of component $\mathrm{A}\left[\mathrm{kg} / \mathrm{m}^{2} . \mathrm{s}\right]$

cFD4 Balancing Φ in $F_{\text {luid }} E_{l e m e n t}$

[Accumulation Φ in FE] + [Outflow of Φ from FE by convection] =

$$
\begin{aligned}
& \frac{\partial \rho \Phi}{\partial t}+\operatorname{div}(\rho \vec{u} \Phi)= \\
= & \rho \frac{\partial \Phi}{\partial t}+\Phi \frac{\partial \rho}{\partial t}+\Phi \operatorname{div}(\rho \vec{u})+\rho \vec{u} \bullet \operatorname{grad} \text { this ollows from the mass balance } \\
= & \rho \frac{\partial \Phi}{\partial t}+\Phi(-\operatorname{div}(\rho \vec{u}))+\Phi \operatorname{div}(\rho \vec{u})+\rho \vec{u} \bullet \operatorname{grad} \Phi= \\
= & \rho\left(\frac{\partial \Phi}{\partial t}+\vec{u} \bullet \operatorname{gradeseterms} \text { are cancelled }\right)=\rho \frac{D \Phi}{D t}
\end{aligned}
$$

cFD4 Balancing $\rho \Phi$ in Fluid Element

Accumulation of Φ

cro4 Moving Fluid element

crp4 Moving Fluid element

$\int_{V} \frac{\partial(\rho \Phi)}{\partial t} d v+\int_{S} \vec{n} \bullet \vec{u}_{m} \rho \Phi d s=-\int_{S} \vec{n} \bullet(\vec{u}-\underbrace{\left.\vec{u}_{m}\right)} \rho \Phi d s-\int_{S} \vec{n} \bullet \rho \vec{\Phi} d s+\int_{V} \rho \dot{\Phi} d v$
$\int_{V}\left(\frac{\partial(\rho \Phi)}{\partial t}+\nabla \cdot(\vec{u} \rho \Phi)\right) d v=-\int_{S} \vec{n} \bullet \rho \vec{\Phi} d s+\int_{V} \rho \dot{\Phi} d v \quad$ Lagrangian fluid particle corresponds to $\mathrm{u}=\mathrm{u}_{\mathrm{m}}$ but result is the same as with fixed FE

cro4 Moving Fluid element

You can imagine that the FE moves with fluid particles, with the same velocity, that it expands or contracts according to changing density (therefore FE represents a moving cloud of fluid particle), however the same resulting integral balance is obtained as for the case of the fixed FE in space:

