

Solvers, schemes SIMPLEx, upwind,...

Remark: foils with „black background" could be skipped, they are aimed to the more advanced courses

Cop FINITE VOLUME METHOD

FINITE CONTROL VOLUME $\delta x=$ Fluid element $d x$

cro7 FVM diffusion problem 1D

$$
\int_{c v}\left[\nabla \cdot(\mathrm{TV})+S_{0} d V=0\right.
$$

Gauss theorem

CV - control volume
A - surface of CV

$$
\int_{A} \vec{n} \cdot(\Gamma \nabla \Phi) d A+\int_{C V} S_{\Phi} d V=0
$$

1D case

$$
\frac{d}{d x}\left(\Gamma \frac{d \Phi}{d x}\right)+S=0 \quad \Phi(A)=\Phi_{A} \quad \Phi(B)=\Phi_{B}
$$

crop FVM diffusion problem 1D

$\int_{A} \vec{n} \bullet(\Gamma \nabla \Phi) d A+\int_{C V} S_{\Phi} d V=0$

Overall flux from

 the west side

Check properties
$>\mathrm{a}_{\mathrm{P}}=\mathrm{a}_{\mathrm{w}}+\mathrm{a}_{\mathrm{E}}$ for $\mathrm{S}=0$ (without sources)
$>$ All coefficients are positive

${ }^{\text {CFD7 }}$ Tutorial - sphere drying

Heat transfer from air at temperature T_{0}
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} k \frac{d T}{d r}\right)=\left.0 \quad \frac{d T}{d r}\right|_{r=0}=\left.0 \quad k \frac{d T}{d r}\right|_{r=R}=\alpha\left(T_{o}-T(R)\right)+\Delta h D \frac{d \omega_{w}}{d r}$ $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} D \frac{d \omega_{w}}{d r}\right)=\left.0 \quad \frac{d \omega_{w}}{d r}\right|_{r=0}=\left.0 \quad k \frac{d \omega_{w}}{d r}\right|_{r=R}=\beta\left(\omega_{e}-\omega_{w}(R)\right)$
$r_{e} k_{e} \frac{T_{E}-T_{P}}{\delta x_{P E}}-r_{w} k_{w} \frac{T_{P}-T_{W}}{\delta x_{W P}}=0$

$-R \alpha\left(T_{o}-T_{R}\right)-r_{W} k_{w} \frac{T_{P}-T_{W}}{\delta x_{W P}}=0$

CFD7 FVM diffusion problem 2D

$$
\frac{\partial}{\partial x}\left(\Gamma \frac{\partial \Phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\Gamma \frac{\partial \Phi}{\partial y}\right)+S=0
$$

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E}+a_{N} \Phi_{N}+a_{S} \Phi_{S}+S_{U} \\
& a_{W}=\frac{\Gamma_{w} A_{w}}{\delta x_{W P}}, \quad a_{E}=\frac{\Gamma_{e} A_{e}}{\delta x_{P E}}, \ldots \\
& a_{P}=a_{W}+a_{E}+a_{N}+a_{S}-S_{P}
\end{aligned}
$$

Boundary conditions
\Rightarrow First kind (Dirichlet BC)
$>$ Second kind (Neumann BC) $\left.\frac{\partial \Phi}{\partial x}\right|_{A}=q_{A}$
\Rightarrow Third kind (Newton's BC) $\left.\quad k \frac{\partial \Phi}{\partial x}\right|_{A}=\alpha\left(\Phi(A)-\Phi_{e}\right)$

CFD7 FVM unstructural mesh generation

${ }^{\text {copo7 }}$ FVM structural mesh generation

Laplace equation solvers

$$
\begin{aligned}
& \nabla \cdot \nabla X=0 \\
& \nabla \cdot \nabla Y=0
\end{aligned}
$$

cop FVM convection diffusion 1D

$$
\int_{c V} \nabla \cdot(\rho \vec{u} \Phi) d V=\int_{C V}\left[\nabla \cdot(\Gamma \nabla \Phi)+S_{\Phi}\right] d V
$$

Gauss theorem
CV - control volume

$$
\int_{A} \vec{n} \bullet(\rho \vec{u} \Phi) d A=\int_{A} \vec{n} \bullet(\Gamma \nabla \Phi) d A+\int_{C V} S_{\Phi} d V
$$

1D case

$$
\frac{d}{d x}(\rho u \Phi)=\frac{d}{d x}\left(\Gamma \frac{d \Phi}{d x}\right)+S
$$

$$
F_{e} \Phi_{e}-F_{w} \Phi_{w}=D_{e}\left(\Phi_{E}-\Phi_{P}\right)-D_{w}\left(\Phi_{P}-\Phi_{W}\right)+S_{U}+S_{P} \Phi_{P}
$$

cFo7 FVM convection diffusion 1D

F-mass flux (through faces A) $F_{w}=(\rho u)_{w} \quad F_{e}=(\rho u)_{e}$
D-diffusion conductance $D_{w}=\frac{\Gamma_{w}}{\delta x_{W P}} \quad D_{e}=\frac{\Gamma_{e}}{\delta x_{P E}}$

Continuity equation (mass flowrate conservation) $\mathrm{F}_{\mathrm{e}}=\mathrm{F}_{\mathrm{w}}$

Relative importance of convective transport is characterised by Peclet number of cell (of control volume, because Pe depends upon size of cell)

CFD7 FVM convection diffusion 1D

Methods differ in the way how the unknown transported values at the control volume faces ($\Phi_{\mathrm{w}}, \Phi_{\mathrm{e}}$) are calculated (different interpolation techniques)

Result can be always expressed in the form

$$
a_{P} \Phi_{P}=\sum_{\text {neighbours }} a_{n b} \Phi_{n b}
$$

Properties of resulting schemes should be evaluated
>Conservativeness
>Boundedness (positivity of coefficients)
$>$ Transportivity (schemes should depend upon the Peclet number of cell)

crop FVM central scheme 1D

$$
\Phi_{e}=\frac{1}{2}\left(\Phi_{P}+\Phi_{E}\right) \quad \Phi_{w}=\frac{1}{2}\left(\Phi_{P}+\Phi_{W}\right)
$$

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E} \\
& a_{W}=D_{w}+\frac{F_{w}}{2} \quad a_{E}=D_{e}-\frac{F_{e}}{2}
\end{aligned}
$$

CFD7 FVM upwind $1^{\text {st }}$ order 1D

$\Phi_{e}=\Phi_{P}$ for flow direction to right $F_{e}>0$ else $\Phi_{e}=\Phi_{E}$
$\Phi_{w}=\Phi_{P}$ for $F_{w}<0$ else $\Phi_{w}=\Phi_{W}$

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E} \\
& a_{W}=D_{w}+\max \left(F_{w}, 0\right) \quad a_{E}=D_{e}+\max \left(-F_{e}, 0\right)
\end{aligned}
$$

$>$ Conservativeness (yes)
$>$ Boundedness (positivity of coefficients) YES for any Pe
> Transportivness (YES)

CFD7 FVM hybrid upwind ${ }_{\text {spadiding } 1972}$ 1D

$>$ Central scheme for $\mathrm{Pe}<2$
>Upwind with diffusion supressed for $\mathrm{Pe}>2$

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E} \\
& a_{W}=\max \left(F_{w}, D_{w}+\frac{F_{w}}{2}, 0\right) \quad a_{E}=\max \left(-F_{e}, D_{e}-\frac{F_{e}}{2}, 0\right)
\end{aligned}
$$

>Conservativeness (yes)
$>$ Boundedness (positivity of coefficients) YES for any Pe
> Transportivness (YES)

cfod FVM power law patankar 1980 1D

$>$ Polynomial flow for $\mathrm{Pe}<10$
$>$ Upwind with zero diffusion for $\mathrm{Pe}>10$
$a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E}$
$a_{W}=D_{w} \max \left(\left(1-\frac{P e_{w}}{10}\right)^{5}, 0\right)+\max \left(F_{w}, 0\right)$
$a_{E}=D_{e} \max \left(\left(1-\frac{P e_{e}}{10}\right)^{5}, 0\right)+\max \left(-F_{e}, 0\right)$
>Conservativeness (yes)

$$
\left(1-\frac{P e}{10}\right)^{5} \cong 1-\frac{P e}{2}
$$

>Boundedness (positivity of coefficients) YES for any Pe
>Transportivness (YES)

CFD7 FVM QUICK ${ }_{\text {Leonard } 1979}$ 1D

Quadratic Upwind Interpolation - more nodal points necessary

$$
\begin{array}{ll}
a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E}+a_{W W} \Phi_{W W}+a_{E E} \Phi_{E E} \\
a_{W}=\frac{F_{e}}{8} \alpha_{e}+\frac{3 F_{w}}{8}\left(\alpha_{w}+1\right)+D_{w} & a_{E}=-\frac{F_{w}}{8}\left(1-\alpha_{w}\right)-\frac{3 F_{w}}{8}\left(2-\alpha_{e}\right)+D_{e} \\
a_{W W}=-\frac{F_{w}}{8} \alpha_{w} & a_{E E}=\frac{F_{e}}{8}\left(1-\alpha_{e}\right)
\end{array}
$$

$>$ Third order of accuracy very low numerical diffusion comparing with other schemes
$>$ Scheme is not bounded (stability problems are frequently encountered)

$$
\alpha_{\mathrm{e}}=1 \text { for } \mathrm{F}_{\mathrm{e}}>0 \text { else } \alpha_{\mathrm{e}}=0 .
$$

$$
\alpha_{w}=1 \text { for } F_{w}>0 \text { else } \alpha_{w}=0 .
$$

crop FVM exponential patankar isoo 1 D

$>$ Exact solution for constant velocity and diffusion coefficient Γ

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E} \\
& a_{W}=\frac{e^{P e / 2}}{e^{P e / 2}+e^{-P e / 2}} \quad a_{E}=\frac{e^{-P e / 2}}{e^{P e / 2}+e^{-P e / 2}}
\end{aligned}
$$

$>$ Conservativeness (yes)

- Boundedness (positivity of coefficients) YES for any Pe
>Transportivness (YES)

cfob FVM exponential proot

-Exact solution for constant velocity and diffusion coefficient Γ
Assume constant mass flux F and constant $\mathrm{Pe}=\mathrm{F} / \mathrm{D}$.

$$
\begin{aligned}
& \frac{\partial \Phi F}{\partial x}=\frac{\partial}{\partial x}\left(\Gamma \frac{\partial \Phi}{\partial x}\right) \rightarrow \Phi=\frac{\Gamma}{F} \frac{\partial \Phi}{\partial x}+c_{1} \rightarrow \Phi=\frac{\delta x}{P e} \frac{\partial \Phi}{\partial x}+c_{1} \rightarrow \Phi=c_{2} e^{P e \frac{x}{\delta x}}+c_{1} \\
& \Phi_{E}=c_{2} e^{P e}+c_{1} c_{1}=\frac{\Phi_{E} e^{-P e}-\Phi_{W} e^{P e}}{e^{-P e}-e^{P e}} \\
& \Phi_{W}=c_{2} e^{-P e}+c_{1} \underbrace{c_{2}=\frac{\Phi_{E}-\Phi_{W}}{e^{P e}-e^{-P e}}}_{\begin{array}{c}
\text { Boundary } \\
\text { conditions }
\end{array}} \begin{array}{c}
\text { Analytical } \\
\text { solution }
\end{array} \\
& \Phi_{P_{P}}=\frac{\Phi_{E}-\Phi_{W}}{e^{P e}-e^{-P e}}+\frac{\Phi_{E} e^{-P e}-\Phi_{W} e^{P e}}{e^{-P e}-e^{P e}}=\frac{\Phi_{E}\left(1-e^{-P e}\right)+\Phi_{W}\left(1-e^{P e}\right)}{e^{P e}-e^{-P e}} \\
& a_{E}=\frac{1-e^{-P e}}{e^{P e}-e^{-P e}}=\frac{e^{-P e / 2}\left(e^{P e / 2}-e^{-P e / 2}\right)}{\left(e^{P e / 2}-e^{-P e / 2}\right)\left(e^{P e / 2}+e^{-P e / 2}\right)}=\frac{e^{-P e / 2}}{e^{P e / 2}+e^{-P e / 2}} \\
& a_{W}=\frac{e^{P e / 2}}{e^{P e / 2}+e^{-P e / 2}}
\end{aligned}
$$

Almost any scheme (with the exception of QUICK) can be converted to central scheme introducing modified transport coefficient Γ

$$
\begin{aligned}
& a_{P} \Phi_{P}=a_{W} \Phi_{W}+a_{E} \Phi_{E} \\
& a_{W}=D_{w}^{*}+\frac{F_{w}}{2} \quad a_{E}=D_{e}^{*}-\frac{F_{e}}{2}
\end{aligned}
$$

Modified diffusion conductances are

$$
D_{w}^{*}=\frac{\Gamma_{w}^{*}}{\delta x_{W P}} \quad D_{e}^{*}=\frac{\Gamma_{e}^{*}}{\delta x_{P E}}
$$

and

$$
\begin{array}{ll}
\frac{\Gamma^{*}}{\Gamma}=1 & \text { Central scheme } \\
\frac{\Gamma^{*}}{\Gamma}=1+\frac{|P e|}{2} & \text { Upwind scheme } \\
\frac{\Gamma^{*}}{\Gamma}=\frac{P e / 2}{\tanh P e / 2} & \text { Exponential scheme }
\end{array}
$$

cFD7 FVM dispersion / diffusion

There are two basic errors caused by approximation of convective terms
$>$ False diffusion (or numerical diffusion) - artificial smearing of jumps, discontinuities. Neglected terms in the Taylor series expansion of first derivatives (convective terms) represent in fact the terms with second derivatives (diffusion terms). So when using low order formula for convection terms (for example upwind of the first order), their inaccuracy is manifested by the artificial increase of diffusive terms (e.g. by increase of viscosity). The false diffusion effect is important first of all in the case when the flow direction is not aligned with mesh, see example

Dispersion (or aliasing) - causing overshoots, artificial oscillations. Dispersion means that different components of Fourier expansion (of numerical solution) move with different velocities, for example shorter wavelengths move slower than the velocity of flow.

0

- boundary condition, all values are zero in the right triangle (without diffusion)

cro7 FVM Navier Stokes equations

Example: Steady state and 2D (velocities \mathbf{u}, \mathbf{v} and pressure p are unknown functions)

This is equation
for \mathbf{U}

$$
\frac{\partial \rho u^{2}}{\partial x}+\frac{\partial \rho u v}{\partial y}=-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+S_{u}
$$

This is equation
for \mathbf{V}
$\frac{\partial \rho u v}{\partial x}+\frac{\partial \rho v^{2}}{\partial y}=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left(\mu \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right)+S_{v}$
$\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}=0$

This is equation
for p ?
But pressure p is not in the continuity equation!
Solution of this problem is in SIMPLE methods, described later

CFD7 FVM checkerboard pattern

Other problem is called checkerboard pattern
This nonuniform distribution of pressure has no effect upon NS equations

cro7FVM staggered grid

Different control volumes for different equations

cro7FVM staggered grid

Location of velocities and pressure in staggered grid

CFD7 FVM continuity equation

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

Cㄷ7 FVM momentum X

$$
\frac{\partial \rho u^{2}}{\partial x}+\frac{\partial \rho u v}{\partial y}=-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+S_{u}
$$

${ }^{\text {c.fo7 }}$ FVM momentum y

$$
\frac{\partial \rho u v}{\partial x}+\frac{\partial \rho v v}{\partial y}=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left(\mu \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right)+S_{v}
$$

$\mathbf{I - 2}_{\mathrm{i}-1} \mathbf{l - 1}{ }_{i} \quad \mathbf{i}{ }_{\mathrm{i}+1} \mathbf{l}+\mathbf{1}_{\mathrm{i}+2} \mathbf{l}+\mathbf{2}$

$$
a_{I, j} v_{I, j}=\sum_{\text {neighbours }} a_{n b} v_{n b}+A_{I, j}\left(p_{I, J-1}-p_{I, J}\right)+b_{I, j}
$$

$\cos ^{\text {FVM }}$ SIMPLE $_{\text {step } 1 \text { (velocities })}$

 Input: Approximation of pressure $\mathrm{p}^{*}$$$
\begin{aligned}
& a_{i, J} u_{i, J}^{*}=\sum_{\text {neighbours }} a_{n b} u_{n b}^{*}+A_{i, J}\left(p_{I-1, J}^{*}-p_{I, J}^{*}\right)+b_{i J} \\
& a_{I, j} v_{I, j}^{*}=\sum_{\text {neighbours }} a_{n b} v_{n b}^{*}+A_{I, j}\left(p_{I, J-1}^{*}-p_{I, J}^{*}\right)+b_{I, j}
\end{aligned}
$$

CFD7 FVM SIMPLE step 2 (pressure correction)

$$
\begin{aligned}
& D=D^{*}+D^{\prime} \quad u=u^{*}+u^{\prime} \quad v=v^{*}+v^{\prime} \\
& a_{i, J} u_{i, J}=\sum_{\text {neighbours }} a_{n b} u_{n b}+A_{i, J}\left(p_{I-1, J}-p_{I, J}\right)+b_{i J} \\
& a_{i, J} u_{i, J}^{*}=\sum_{\text {neighbours }} a_{n b} u_{m b}^{*}+A_{i, J}\left(p_{t-1, t}^{*}-p_{t, J}^{*}\right)+b_{i J}
\end{aligned}
$$

$$
\begin{aligned}
& u_{i, t}^{\prime}=d_{i, J}\left(p_{t-1,}^{\prime}-p_{t, t}^{\prime}\right) \quad v_{l, j}^{\prime}=d_{l, j}\left(p_{t, t-1}^{\prime}-p_{t, J}^{\prime}\right)
\end{aligned}
$$

subtract

Substitute $u^{*}+u^{\prime}$ and $v^{*}+v^{\prime}$ into continuity equation

$$
a_{I J} p_{I J}^{\prime}=\sum_{\text {neighbours }} a_{n b} p_{n b}^{\prime}+b_{I J}^{\prime}
$$

CFD7 FVM SIMPLE step 3 (update $\mathbf{p , u , v}$)

$$
\begin{aligned}
& \begin{array}{c}
\text { Only these new pressures are } \\
\text { necessary for next iteration }
\end{array} \\
& v_{i, J} \leftarrow u_{i, J}^{*}+d_{i, J}\left(p_{I-1, J}^{\prime}-p_{I, J}^{\prime}\right)
\end{aligned}
$$

Continue with the improved pressures to the step 1

cFD7 FVM SIMPLEC (sImpLE corrected)

CFD7 FVM SIMPLER (SIMPLE Revised)

Idea: calculate pressure distribution directly from the Poisson's equation

$$
\begin{aligned}
& \nabla \cdot(\rho \vec{u} \vec{u})=-\nabla p+\mu \nabla^{2} \vec{u} \\
& \nabla \cdot \nabla \cdot(\rho \vec{u} \vec{u})=-\nabla \cdot \nabla p+\mu \nabla^{2} \nabla \cdot \vec{u} \\
& \nabla^{2} p=f(u, v)
\end{aligned}
$$

cFo7 FVM Rhie Chow (Fluent)

The way how to avoid staggering (difficult implementation in unstructured meshes) was suggested in the paper
Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, Vol.21, No.11, 1983
we have at each cell discretised equation in this form,

$$
a_{p} \vec{v}_{P}=\sum_{\text {neighbours }} a_{l} \vec{v}_{l}-\frac{\nabla p}{V}
$$

For continuity we have

$$
\sum_{\text {faces }}\left[\frac{1}{a_{p}} H\right]_{\text {face }}=\sum_{\text {faces }}\left[\frac{1}{a_{p}} \frac{\nabla p}{V}\right]_{\text {face }}
$$

where

$$
H=\sum_{\text {neighbours }} a_{l} \vec{v}_{l}
$$

This interpolation of variables H and ∇p based on coefficients a_{1} for pressure velocity coupling
is called Rhie-Chow interpolation. See also

crop FVM solvers

Solution of linear algebraic equation system $\mathbf{A x}=\mathbf{b}$
$>$ TDMA - Gauss elimination tridiagonal matrix
(obvious choice for 1D problems, but suitable for 2D and 3D problems too, iteratively along the x, y, z grid lines - method of alternating directions ADI)
>PDMA - pentadiagonal matrix (suitable for ducck), Fortran version
>CGM - Conjugated Gradient Method (tieraite methoo: each
iteration calculates increment of vector Φ in the direction of gradient of minimised function - square of residual vector)
$>$ Multigrid method (Fluent)

CFD7 Solver TDMA tridiagonal system MATLAB

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=d_{i} \quad i=1,2, \ldots, n
$$

```
function x = TDMAsolver(a,b,c,d)
%a, b, c, and d are the column vectors for the compressed tridiagonal matrix
n = length(b); % n is the number of rows
% Modify the first-row coefficients
c(1) = c(1) / b(1); % Division by zero risk.
d(1) = d(1) / b(1); % Division by zero would imply a singular matrix.
for i = 2:n
    id = 1 (b(i) - c(i-1) * a(i)); % Division by zero risk.
    c(i) = c(i)* id; % Last value calculated is redundant.
    d(i) = (d(i) - d(i-1) * a(i)) * id;
end
% Now back substitute.
x(n) = d(n);
Forward step (elimination
entries bellow diagonal)
for i = n-1:-1:1
    x(i) = d(i) - c(i) * x(i + 1);
end
end
```


cFD7 Solver TDMA applied to 2D problems (ADI)

CFD7 Solver PDMA pentagonal system MATLAB

function $x=$ pentsolve(A,b)

\% Solve a pentadiagonal system $\mathrm{Ax}=\mathrm{b}$ where A is a strongly nonsingular matrix
\% Reference: G. Engeln-Muellges, F. Uhlig, "Numerical Algorithms with C" \% Chapter 4. Springer-Verlag Berlin (1996)\%
\% Written by Greg von Winckel 3/15/04
\% Contact: gregvw@chtm.unm.edu
\%
$[\mathrm{M}, \mathrm{N}]=\operatorname{size}(\mathrm{A})$;
$\mathrm{x}=\mathrm{zeros}(\mathrm{N}, 1)$;
\% Check for symmetry
if $A==A^{\prime}$ \% Symmetric Matrix Scheme
\% Extract bands
d=diag(A);
$\mathrm{f}=\operatorname{diag}(\mathrm{A}, 1)$;
$\mathrm{e}=\operatorname{diag}(\mathrm{A}, 2)$;
alpha=zeros($\mathrm{N}, 1$);
gamma=zeros(N-1,1);
delta=zeros(N-2,1);
c=zeros(N,1);
z=zeros(N,1);
\% Factor A=LDL
alpha(1)=d(1)
gamma(1)=f(1)/alpha(1)
delta(1)=e(1)/alpha(1);
alpha(2) $=\mathrm{d}(2)-\mathrm{f}(1)^{*}$ gamma(1);
gamma(2) $=\left(f(2)-e(1)^{*}\right.$ gamma(1))/alpha(2);
delta(2)=e(2)/alpha(2);
or $\mathrm{k}=3: \mathrm{N}-2$
alpha(k)=d(k)-e(k-2)*delta(k-2)-alpha(k-1)*gamma(k-1)^2;
gamma(k)=(f(k)-e(k-1)*gamma(k-1))/alpha(k)
delta(k)=e(k)/alpha(k)
end
alpha($\mathrm{N}-1$) $=\mathrm{d}(\mathrm{N}-1)-\mathrm{e}(\mathrm{N}-3)^{\star}$ delta($\mathrm{N}-3$)-alpha($\left.\mathrm{N}-2\right)^{\star}$ gamma($\left.\mathrm{N}-2\right)^{\wedge} 2$;
gamma $(\mathrm{N}-1)=\left(\mathrm{f}(\mathrm{N}-1)-\mathrm{e}(\mathrm{N}-2)^{*}\right.$ gamma($\left.\mathrm{N}-2\right)$)/alpha($\mathrm{N}-1$);
alpha(N) $=\mathrm{d}(\mathrm{N})-\mathrm{e}(\mathrm{N}-2)^{*}$ delta($\mathrm{N}-2$)-alpha($\left.\mathrm{N}-1\right)^{*}$ gamma($\left.\mathrm{N}-1\right)^{\wedge}$ 2;
\% Update Lx=b, Dc=z
$z(1)=b(1)$;
$z(2)=b(2)$-gamma(1)*z(1);
for $k=3$:N
$z(k)=b(k)$-gamma $(k-1)^{*} z(k-1)-$ delta $(k-2)^{*} z(k-2) ;$ nd
=z./alpha;
\% Backsubstitution L'x=c
$\mathrm{x}(\mathrm{N})=\mathrm{c}(\mathrm{N})$;
$x(\mathrm{~N}-1)=\mathrm{c}(\mathrm{N}-1)$-gamma $(\mathrm{N}-1)^{*} x(\mathrm{~N})$
for $\mathrm{k}=\mathrm{N}-2:-1: 1$
$x(k)=c(k)-$ gamma $(k)^{*} x(k+1)-\operatorname{delta}(k)^{*} x(k+2) ;$ end
else \% Non-symmetric Matrix Scheme
d=diag(A);
e=diag(A,1);
$\mathrm{f}=\operatorname{diag}(\mathrm{A}, 2)$;
$\mathrm{h}=[0 ; \operatorname{diag}(\mathrm{A},-1)]$;
$\mathrm{g}=[0 ; 0 ; \operatorname{diag}(\mathrm{A},-2)]$
alpha=zeros($\mathrm{N}, 1$);
gam=zeros(N-1,1);
delta=zeros(N-2,1);
bet=zeros($\mathrm{N}, 1$);
c=zeros(N,1);
$\mathrm{z}=\mathrm{zeros}(\mathrm{N}, 1)$;
alpha(1)=d(1);
gam(1)=e(1)/alpha(1);
delta(1) $=f(1) /$ alpha(1);
bet(2)=h(2);
alpha(2)=d(2)-bet(2)*gam(1);
gam(2)=(e(2)-bet(2)*delta(1))/alpha(2)
delta(2)=f(2)/alpha(2);
for $\mathrm{k}=3: \mathrm{N}-2$
$\operatorname{bet}(\mathrm{k})=\mathrm{h}(\mathrm{k})-\mathrm{g}(\mathrm{k})^{*} \operatorname{gam}(\mathrm{k}-2)$;
alpha(k)=d(k)-g(k)*delta(k-2)-bet(k)*gam(k-1); gam $(k)=\left(e(k)\right.$-bet $\left.(k)^{*} \operatorname{delta}(k-1)\right) / \operatorname{alpha}(k)$; delta(k)=f(k)/alpha(k);
end
$\operatorname{bet}(\mathrm{N}-1)=\mathrm{h}(\mathrm{N}-1)-\mathrm{g}(\mathrm{N}-1)^{*}$ gam($\mathrm{N}-3$);
alpha(N-1)=d(N-1)-g(N-1)*delta(N-3)-bet(N-1)*gam(N-2) $\operatorname{gam}(\mathrm{N}-1)=\left(\mathrm{e}(\mathrm{N}-1)-\operatorname{bet}(\mathrm{N}-1)^{*} \operatorname{delta}(\mathrm{~N}-2)\right.$)/alpha($\mathrm{N}-1$)
$\operatorname{bet}(\mathrm{N})=\mathrm{h}(\mathrm{N})-\mathrm{g}(\mathrm{N})^{*} \operatorname{gam}(\mathrm{~N}-2)$;
alpha $(\mathrm{N})=\mathrm{d}(\mathrm{N})-\mathrm{g}(\mathrm{N})^{*} \operatorname{delta}(\mathrm{~N}-2)-\operatorname{bet}(\mathrm{N})^{*}$ gam $(\mathrm{N}-1)$;
\% Update b=L
$c(1)=b(1) / a l p h a(1)$;
$c(2)=\left(b(2)-\right.$ bet $\left.(2)^{*} c(1)\right) /$ alpha(2);
for $\mathrm{k}=3$: N
$c(k)=\left(b(k)-g(k)^{*} c(k-2)-b e t(k)^{*} c(k-1)\right) /$ alpha $(k) ;$
\% Back substitution Rx=c
$\mathrm{x}(\mathrm{N})=\mathrm{c}(\mathrm{N})$;
$x(N-1)=c(N-1)-\operatorname{gam}(N-1)^{*} x(N)$;
for $\mathrm{k}=\mathrm{N}-2:-1: 1$
$x(k)=c(k)-\operatorname{gam}(k)^{*} x(k+1)-\operatorname{delta}(k)^{*} x(k+2) ;$ end

cFD7 Solver CGM conjugated gradient GNU

Solution of linear algebraic equation system $\mathbf{A x}=\mathbf{b}$

\square

cfot Solver MULTIGRID

Solution on a rough grid takes into account very quickly long waves (distant boundaries etc), that is refined on a finer grid.

Rough grid (small wave numbers)
Fine grid (large wave numbers details)

Interpolation from rough to fine grid

Averaging from fine to rough grid

cFo7 Unsteady flows

Discretisation like in the finite difference methods discussed previously

Example: Temperature field $\frac{\partial T}{\partial t}=a \frac{\partial^{2} T}{\partial x^{2}}$

EXPLICIT scheme
First order accuracy in time
Stable only if

$$
\Delta t<\frac{\Delta x^{2}}{2 a}
$$

IMPLICIT scheme
First order accuracy in time
Unconditionally stable and bounded

CRANK NICHOLSON scheme
Second order accuracy in time
Unconditionally stable, but bounded only if

$$
\Delta t<\frac{\Delta x^{2}}{a}
$$

crop FVM Boundary conditions

Boundary conditions are specified at faces of cells (not at grid points)
$>$ INLET specified $u, v, w, T, k, \varepsilon$ (but not pressure!)
$>$ OUTLET nothing is specified (p is calculated from continuity eq.)
\Rightarrow PRESSURE only pressure is specified (not velocities)
>WALL
zero velocities, $\mathrm{k}_{\mathrm{p}}, \varepsilon_{\mathrm{p}}$ calculated from the law of wall

Recommended combinations for several outlets

Forbidden combinations for several outlets

cro7 FVM Boundary conditions

>SYMMETRY
>PERIODICAL

Copied from Kozubkova: Fluent-textbook

