

Introduction and rules (form of lectures, presentations of papers by students, requirements for exam). Preacquaintance (photography). Working with databases and primary sources.

мнмт1 Momentum Heat Mass Transfer

3P/1C, 4 credits, exam, LS2018, room 505d

- Lectures Prof.Ing.Rudolf Žitný, CSc. (Monday 10:45-13:00)
- Tutorials Ing.Karel Petera, PhD.
- Rating 30(quise in test)+30(example in test)+40(oral exam) points

A	B	C	D	E	F
$90+$	$80+$	$70+$	$60+$	$50+$..49

Způsob zakončení: Z,ZK

Rozsah: 3+1

Kapacita předmětu: 30

| Excel | Tisk | E-mail | Zobrazit filtr |
| :--- | :--- | :--- | :--- | :--- |

Pǐijmeni	Jméno	Identifikátor	Fakulta	Studijni program	Typ programu
Alsatmi	Basel	479516	FS	Bakalářský program pro výměnné studenty	B
Bemmireddy	Santhosh Reddy	473334	FS	Strojní inženýrství	N
Duque Dussan	Eduardo	472430	FS	Strojní inženýrství	N
Fenech	Daniel	479578	FS	Bakalářský program pro výměnné studenty	B
Feppon	Nicolas	472985	FS	Mobility - bakalárský	B
Gueho	Lénaig	479705	FEL	Electrical Engineering and Computer Science	B
Hanna Anz	Qais Elia	453674	FS	Strojírenství	B
Hübbers	Lena	479702	FS	Magisterský program pro výměnné studenty	N
Ipek	Murat	472154	FS	Strojní inženýrství	N
Lalonde	Timothe	479067	FS	Mobility - bakalársky	B
Lloyd	Olivia	472153	FS	Mobility - bakalársky	B
Márquez Hernández	Luis Eduardo	472087	FS	Mobility - bakalársky	B
Mcgowan	Orla	472830	FS	Magisterský program pro výměnné studenty	N
Messas	Anis	453198	FS	Strojírenství	B
Nivet	Gabriel	479697	FEL	Electrical Engineering and Computer Science	B
Perez	Ariel	479870	FEL	Electrical Engineering and Computer Science	B
Somireddy	Ashok Kumar Reddy	473153	FS	Strojní inženýrství	N
Souza	Anne	479472	FS	Mobility - bakalársky	B
Stalls	Wayne	479054	FS	Mobility - bakalárský	B
Stevenson	Craig	472700	FS	Magisterský program pro výměnné studenty	N
Stukel	Nathan	479222	FS	Mobility - bakalársky	B
Suleiman	Abubakar Shola	459336	FS	Strojírenství	B
Torres Tapia	Luis Alberto	476496	FS	Strojní inženýrství	N
Upadhyay	Sumit	473394	FS	Strojní inženýrství	N
Uzakov	Timur	453574	FS	Teoretický základ strojního inženýrství	B
Walker	Justin Roy	479055	FS	Mobility - bakalársky	B
Yap	Jane	479062	FS	Mobility - bakalárský	B
Yücel	Utku	479428	FS	Bakalářský program pro výměnné studenty	B

3P/2C, 4 credits, exam, LS2018, room 505

MHMT1
 Literature - sources

- Textbook:

Šesták J., Rieger F.: Přenos hybnosti tepla a hmoty, ČVUT Praha, 2004 - Monography: avaiable at NTL

Bird, Stewart, Lightfoot: Transport Phenomena. Wiley, 2nd edition, 2006 Welty J.R.: Fundamental of momentum, heat and mass transfer,Wiley,2008

- Databases of primary sources

Direct access to databases (WoS, Elsevier, Springer,...) knihovny.cvut.cz

- yyberte si informační zdroj -wberte si informačnízdr IEEE Computer Society Digital Library ISI Web of Knowledge (WoS) Journal Citation Reports Scopus
MIT CogNet
Physical Revi
Physical Review Online Archive (PROLA)
Spinger Note
Lecture Notes in Computer Science
Science Direct (Elsevier)
loP Science
Wiley Encyclopedia of Medical Devices and Instrumentation EBSCOhost
The ACM Digital Library
Computer Science Library
Lecture Notes in Mathematics
Pacific Journal of Mathematics Ebrary (trial do 21. 6.

мнмті Science Direct

mwirt Prerequisities: Tensors

MHMT1

Prerequisities: Tensors

Transfer phenomena operate with the following properties of solids and fluids (determining state at a point in space $\mathrm{x}, \mathrm{y}, \mathrm{z}$):

Scalars T (temperature), p (pressure), ρ (density), h (enthalpy), c_{A} (concentration), k (kinetic energy)
Vectors \vec{u} (velocity), \vec{f} (forces), ∇T (gradient of scalar), and others like vorticity, displacement...
Tensors $\quad \overrightarrow{\vec{\tau}} \quad \vec{\sigma}$ (stress), $\quad \overrightarrow{\vec{\Delta}}$ (rate of deformation), $\quad \nabla \vec{u}$ (gradient of vector), deformation tensor...
Scalars are determined by 1 number.
Vectors are determined by 3 numbers

$$
\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)=\left(u_{1}, u_{2}, u_{3}\right)
$$

Tensors are determined by 9 numbers

$$
\overrightarrow{\vec{\sigma}}=\left(\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)
$$

Scalars, vectors and tensors are independent of coordinate systems (they are objective properties). However, components of vectors and tensors depend upon the coordinate system. Rotation of axis has no effect upon a vector (its magnitude and the arrow direction), but coordinates of the vector are changed (coordinates u_{i} are projections to coordinate axis). See next slide...

MHMT1

Rotation of cartesian coordinate system

Three components of a vector represent complete description (length of an arrow and its directions), but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian coordinate system is represented by transformation of the vector coordinates by the matrix product

$$
\begin{aligned}
& a_{1}^{\prime}=a_{1} \cos \left(1^{\prime}, 1\right)+a_{2} \cos \left(1^{\prime}, 2\right)+a_{3} \cos \left(1^{\prime}, 3\right) \\
& a_{2}^{\prime}=a_{1} \cos \left(2^{\prime}, 1\right)+a_{2} \cos \left(2^{\prime}, 2\right)+a_{3} \cos \left(2^{\prime}, 3\right) \\
& a_{3}^{\prime}=a_{1} \cos \left(3^{\prime}, 1\right)+a_{2} \cos \left(3^{\prime}, 2\right)+a_{3} \cos \left(3^{\prime}, 3\right)
\end{aligned}
$$

$$
\left(\begin{array}{l}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(1^{\prime}, 1\right) & \cos \left(1^{\prime}, 2\right) & \cos \left(1^{\prime}, 3\right) \\
\cos \left(2^{\prime}, 1\right) & \cos \left(2^{\prime}, 2\right) & \cos \left(2^{\prime}, 3\right) \\
\cos \left(3^{\prime}, 1\right) & \cos \left(3^{\prime}, 2\right) & \cos \left(3^{\prime}, 3\right)
\end{array}\right) \cdot\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

$\left[a^{\prime}\right]=[[R]][a]$

Rotation matrix
(R_{ij} is cosine of angle between axis i ' and j^{\prime})

MHMT1

Rotation of cartesian coordinate system

Example: Rotation only along the axis 3 by the angle $\boldsymbol{\varphi}$ (positive for counter-clockwise direction)
Properties of goniometric functions $\quad \cos (-\varphi)=\cos \varphi \quad \cos \left(\frac{\pi}{2}-\varphi\right)=\sin \varphi \quad \cos \left(-\left(\frac{\pi}{2}+\varphi\right)\right)=-\sin \varphi$

$$
\binom{a_{1}^{\prime}}{a_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \left(1^{\prime}, 1\right)=\cos \varphi & \cos \left(1^{\prime}, 2\right)=\sin \varphi \\
\cos \left(2^{\prime}, 1\right)=-\sin \varphi & \cos \left(2^{\prime}, 2\right)=\cos \varphi
\end{array}\right) \cdot\binom{a_{1}}{a_{2}}
$$

$[[\mathrm{R}]]^{T}[[\mathrm{R}]]=[[\mathrm{I}]] \rightarrow[[\mathrm{R}]]^{-1}=[[R]]^{T}$

therefore the rotation matrix is orthogonal and can be inverted just only by simple transposition (overturning along the main diagonal). Proof:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cos ^{2} \varphi+\sin ^{2} \varphi & \cos \varphi \sin \varphi-\sin \varphi \cos \varphi \\
\sin \varphi \cos \varphi-\cos \varphi \sin \varphi & \sin ^{2} \varphi+\cos ^{2} \varphi
\end{array}\right)= \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

\&

Stress tensor is a typical example of the second order tensor with a pair of indices having the following meaning

Index of plane index of force component
(cross section) (force acting upon the cross section i)

Later on we shall use another tensors of the second order describing kinematics of deformation (deformation tensors, rate of deformation,...)

Nine components of a tensor represent complete description of state (e.g. distribution of stresses at a point), but these components depend upon the choice of coordinate system, the same situation like with vectors. The transformation of components corresponding to the rotation of the cartesian coordinate system is given by the matrix product

$$
[[\sigma]]=[[R]][\sigma]][[R]]^{T}
$$

where the rotation matrix $[[R]]$ is the same as previously

$$
[[R]]=\left(\begin{array}{ccc}
\cos \left(1^{\prime}, 1\right) & \cos \left(1^{\prime}, 2\right) & \cos \left(1^{\prime}, 3\right) \\
\cos \left(2^{\prime}, 1\right) & \cos \left(2^{\prime}, 2\right) & \cos \left(2^{\prime}, 3\right) \\
\cos \left(3^{\prime}, 1\right) & \cos \left(3^{\prime}, 2\right) & \cos \left(3^{\prime}, 3\right)
\end{array}\right)
$$

Orthogonal matrix of the rotation of coordinate system [[R]] is fully determined by 3 parameters, by subsequent rotations around the x, y, z axis (therefore by 3 angles of rotations). The rotations can be selected in such a way that 3 components of the stress tensor in the new coordinate system disappear (are zero). Because the stress tensor is symmetric (usually) it is possible to anihilate all off-diagonal components

$$
\left(\begin{array}{ccc}
\sigma_{1}^{\prime} & 0 & 0 \\
0 & \sigma_{2}^{\prime} & 0 \\
0 & 0 & \sigma_{3}^{\prime}
\end{array}\right)=[[R]][[\sigma]][[R]]^{T}
$$

Diagonal terms are normal (principal) stresses and the axis of the rotated coordinate systems are principal directions (there are no shear stresses in the cross-sections oriented in the principal directions).

Special tensors

Kronecker delta (unit tensor, components independent of rotation)

$$
\begin{aligned}
& \delta_{i j}=0 \text { for } i \neq j \\
& \delta_{i j}=1 \text { for } i=j
\end{aligned}
$$

$$
\overrightarrow{\boldsymbol{\delta}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)

$$
\varepsilon_{i j k}= \begin{cases}+1 & \text { if }(i, j, k) \text { is }(1,2,3),(3,1,2) \text { or }(2,3,1) \\ -1 & \text { if }(i, j, k) \text { is }(1,3,2),(3,2,1) \text { or }(2,1,3) \\ 0 & \text { otherwise: } i=j \text { or } j=k \text { or } k=i\end{cases}
$$

In terms of the epsilon tensor the vector product will be defined

Scalar product

Scalar product (operator \bullet) of two vectors is a scalar

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \varphi \\
& \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sum_{i=1}^{3} a_{i} b_{i}=a_{i} b_{i}=a_{i}^{\prime} b_{i}^{\prime}
\end{aligned}
$$

$a_{i} b_{i}$ is abbreviated Einstein notation. Repeated indices are summing (dummy) indices.
Proof that $a_{i} b_{i}=a_{i}^{\prime} b_{i}^{\prime}$

$$
a_{i}^{\prime}=R_{i m} a_{m} \quad b_{j}^{\prime}=R_{j k} b_{k}
$$

Remark: there were used dummy indices m and k in these relations. Letters of the dummy indices can be selected arbitrary, but in this case they must be different, so that to avoid appearance of four equal indices in a tensorial term in the following product a.b (there can be always max. two indices with the same name indicating a summation)

$$
a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}+a_{3}^{\prime} b_{3}^{\prime}=a_{i}^{\prime} b_{i}^{\prime}=R_{i m} R_{i k} a_{m} b_{k}=R_{m i}^{T} R_{i k} a_{m} b_{k}=\delta_{m k} a_{m} b_{k}=a_{m} b_{m}
$$

Scalar product

Example: scalar product of velocity $\underset{\mu}{\mu}[\mathrm{m} / \mathrm{s}]$ and force $\underset{F}{F}[\mathrm{~N}]$ acting at a point is power P [W] (scalar)

$$
P=\vec{u} \cdot \vec{F}=u_{i} F_{i}
$$

Example: Scalar product of velocity \vec{u} [m / s] and the normal vector of an oriented surface $d \vec{s}\left[\mathrm{~m}^{2}\right]$ is the volumetric flowrate $\mathrm{Q}\left[\mathrm{m}^{3} / \mathrm{s}\right]$ through the surface

$$
Q=d \vec{s} \bullet \vec{u}
$$

Scalar product

Scalar product can be applied also between tensors or between vector and tensor

$$
\vec{u} \bullet \vec{\sigma}=\vec{f} \underbrace{\sum_{i=1}^{3} n_{i} \sigma_{i j}=n_{i} \sigma_{i j}=f_{j}}_{\substack{\text { i-is summation (dummy) index, while } j \text {-is } \\ \text { free index }}}
$$

This case explains how it is possible to calculate internal stresses acting at an
 arbitrary cross section (determined by outer normal vector n) knowing the stress tensor.

Scalar product - examples

Dot product of delta tensors

$$
\overrightarrow{\boldsymbol{\delta}} \bullet \overrightarrow{\vec{\delta}}=\overrightarrow{\vec{\delta}} \quad \delta_{i m} \delta_{m j}=\delta_{i j} \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Scalar brodint of tensors is a tensor

$$
\overrightarrow{\vec{\sigma}} \cdot \overrightarrow{\vec{\tau}}=\vec{\zeta} \quad \sigma_{i m} \tau_{m j}=\varsigma_{i j}
$$

Double dot product of tensors is a scalar

$$
\vec{\sigma}: \overrightarrow{\vec{\tau}}=\varsigma \quad \sigma_{k m} \tau_{m k}=\varsigma
$$

Trace of a tensor (tensor contraction)

$$
\operatorname{tr}(\overrightarrow{\vec{\sigma}})=\sigma_{m m}
$$

$$
\text { example } \operatorname{tr}(\stackrel{\stackrel{\rightharpoonup}{\delta}}{\delta})=3
$$

Vector product

Vector product (operator x) of two vectors is a vector

$$
|c|=|a||b| \sin \varphi
$$

$$
\begin{aligned}
& \vec{c}=\vec{a} \times \vec{b}=(\overrightarrow{\vec{\varepsilon}} \bullet \vec{b}) \bullet \vec{a} \\
& c_{i}=\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} a_{j} b_{k}=\varepsilon_{i j k} a_{j} b_{k}
\end{aligned}
$$

$$
\text { for example } c_{1}=\varepsilon_{123} a_{2} b_{3}+\varepsilon_{132} a_{3} b_{2}=a_{2} b_{3}-a_{3} b_{2}
$$

Important relationship between the Levi Civita and the Kronecker delta special tensors

$$
\begin{aligned}
& \varepsilon_{i j k} \varepsilon_{k m n}=\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m} \\
& \text { check for } \mathrm{i}=1, \mathrm{j}=2,(\mathrm{k}=3), \mathrm{m}=1, \mathrm{n}=2 \quad \varepsilon_{123} \varepsilon_{312}=\delta_{11} \delta_{22}-\delta_{12} \delta_{21}=1 \\
& \text { check for } \mathrm{i}=1, \mathrm{j}=2,(\mathrm{k}=3), \mathrm{m}=2, \mathrm{n}=1 \quad \varepsilon_{123} \varepsilon_{321}=\delta_{12} \delta_{21}-\delta_{11} \delta_{22}=-1
\end{aligned}
$$

Vector product

Examples of applications

Moment of force (torque) $\vec{M}=\vec{r} \times \vec{F}$

Coriolis force

$$
\vec{F}=2 m \vec{u} \times \vec{\omega}
$$

application: Coriolis flowmeter

Diadic product

Diadic product (no operator) of two vectors is a second order tensor

$$
\vec{a} \vec{b}=\vec{\pi} \quad a_{i} b_{j}=\pi_{i j}
$$

MHMT1
 Differential operator ∇ (Naba)

Bailey

Differential operator ∇
 (Nabla)

GRADIENT - measure of spatial changes

Symbolic operator ∇ represents a vector of first derivatives with respect x, y, z.

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right) \quad \nabla_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}
$$

∇ applied to scalar is a vector (gradient of scalar)

$$
\nabla T=\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) \quad \nabla_{i} T=\frac{\partial T}{\partial x_{i}}
$$

∇ applied to vector is a tensor (for example gradient of velocity is a tensor)

$$
\nabla \vec{u}=\left(\begin{array}{lll}
\frac{\partial u_{x}}{\partial x} & \frac{\partial u_{y}}{\partial x} & \frac{\partial u_{z}}{\partial x} \\
\frac{\partial u_{x}}{\partial y} & \frac{\partial u_{y}}{\partial y} & \frac{\partial u_{z}}{\partial y} \\
\frac{\partial u_{x}}{\partial z} & \frac{\partial u_{y}}{\partial z} & \frac{\partial u_{z}}{\partial z}
\end{array}\right) \quad \nabla_{\mathrm{i}} u_{j}=\frac{\partial u_{j}}{\partial x_{i}}
$$

Differential operator ∇.

DIVERGENCY - magnitude of sources/sinks

Scalar product $\nabla \bullet$ represents intensity of source/sink of a vector quantity at a point

$$
\nabla \bullet \vec{u}=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}=\sum_{i=1}^{3} \frac{\partial u_{i}}{\partial x_{i}}=\frac{\partial u_{i}}{\partial x_{i_{i}}}
$$

Scalar product $\nabla \bullet$ can be applied also to a tensor giving a vector (e.g. source/sink of momentum in the direction x, y, z)
$\stackrel{\rho}{f}=\nabla \bullet \stackrel{\beta}{\sigma}=\left(\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z}, \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z}, \frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}\right) \quad \mathrm{f}_{\mathrm{i}}=\nabla_{\mathrm{j}} \sigma_{j i}$
The vector f_{i} represents resulting force of stresses acting at the surface of an infinitely small volume (the force is related to this volume therefore unit is $\mathrm{N} / \mathrm{m}^{3}$)

Laplace operator ∇^{2}

Divergency of gradient - measure of nonuniformity

Scalar product $\nabla \bullet \nabla=\nabla^{2}$ is the operator of second derivatives (when applied to scalar it gives a scalar, applied to a vector gives a vector,...). Laplace operator is divergence of a gradient (gradient of temperature, gradient of velocity...)

$$
\begin{aligned}
& \nabla \bullet \nabla T=\nabla^{2} T=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=\frac{\partial^{2} T}{\partial x_{i} \partial x_{i}} \\
& \nabla \bullet \nabla \vec{u}=\left(\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{x}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial z^{2}}, \frac{\partial^{2} u_{y}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial y^{2}}+\frac{\partial^{2} u_{y}}{\partial z^{2}}, \frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)=\sum_{i=1}^{3} \frac{\partial^{2} u_{j}}{\partial x_{i}^{2}}=\frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{i}}
\end{aligned}
$$

Physical interpretation: ∇^{2} describes diffusion processes (random molecular motion). The term ∇^{2} appears in the transport equations for temperatures, momentum, concentrations and its role is to smooth out all spatial nonuniformities of the transported properties.

Laplace operator ∇^{2}

Positive value of $\nabla^{2} T$ tries to enhance the decreasing part

MHMT1

Integrals - Gauss theorem

Volume integrals with nabla operator can be ggnverted to surface integrals (just only by replacing nabla ∇ with unit normal vector h)

Physical interpretation: accumulation in volume V is overall flux through boundary

$$
\iiint_{V_{\text {Divergence of } P} \nabla \boldsymbol{v}} P d v=\iint_{S}^{\underset{~ p r o j e c t i o n ~ o f ~}{ } P \text { to outer normal }} \underset{\text { rem }}{n} d s
$$

Variable \boldsymbol{P} can be

$>$ Scalar (typically pressure p) $\iiint_{V} \nabla p d v=\iint_{S} n p d s$
$>$ Vector (vector of velocity, momentum, heat flux). Surface integral represents flux of vector in the direction of outer normal. $\iiint_{V} \nabla \cdot u d v=\iint_{S}^{\mathrm{r}} n \cdot u d s$
$>$ Tensor (tensor of stresses). In this case the Gauss theorem represents the balance between inner stresses and outer forces acting upon the surface,

$$
\iiint_{V} \nabla \cdot \stackrel{\mathbf{f}}{\tau} d v=\iint_{S} \underset{n}{\mathrm{r}} \cdot \stackrel{\mathbf{f}}{\tau} d s
$$

Transcriptions

Symbolic notation, for example $\nabla^{2} T$, is compact, unique and suitable for definition of problems in terms of tensorial equations. However, if you need to solve these equation (for example $\nabla^{2} T=f$) you have to rewrite symbolic form into index notation, giving equations (usually differential equations) for components of vectors or tensors, which are expressed by numbers (may be complex numbers).

Bailey

General procedure how to rewrite symbolic formula to index notation
$>$ Replace each arrow \rightarrow by an empty place for index
$>$ Replace each vector operator by $(-1) \bullet \varepsilon_{-}$_ \bullet
$>$ Replace each dot • by a pair of dummy indices in the first free position left and right $>$ Write free indices into remaining positions

Practice examples!!

Coordinate systems

Previous conversion procedure can be applied only in a cartesian coordinate systems

Formulation in the x, y, z cartesian system is not always convenient, especially if the geometry of region is cylindrical or spherical. For example the boundary condition of a constant temperature is difficult to prescribe on the curved surface of sphere in the rectangular cartesian system. In the case that the problem formulation suppose a rotational or spherical symmetry, the number of spatial coordinates can be reduced and the problem is simplified to 1D or 2D problem, but in a new coordinate system.

In the following we shall demonstrate how to convert tensor terms from symbolic notation (which is independent to a specific coordinate system) into the cylindrical coordinate system.

Cooroingte SyStems (cylindrical)

Cylindrical (and spherical) systems are defined by transformations

Using this it is possible to express partial derivatives with respect x_{1}, x_{2}, x_{3} in terms of derivatives with respect the coordinates of cylindrical system

$$
\begin{aligned}
& \frac{\partial T}{\partial x_{1}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{1}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{1}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{1}}=\frac{\partial T}{\partial r} c-\frac{\partial T}{\partial \varphi} \frac{s}{r} \\
& \frac{\partial T}{\partial x_{2}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{2}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{2}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{2}}=\frac{\partial T}{\partial r} s+\frac{\partial T}{\partial \varphi} \frac{c}{r} \\
& \frac{\partial T}{\partial x_{3}}=\frac{\partial T}{\partial r} \frac{\partial r}{\partial x_{3}}+\frac{\partial T}{\partial \varphi} \frac{\partial \varphi}{\partial x_{3}}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial x_{3}}=\frac{\partial T}{\partial z}
\end{aligned}
$$

Coordinate systems (cylindrical)

In the same way also the second derivatives can be expressed

$$
\begin{aligned}
& \frac{\partial^{2} T}{\partial x_{1}^{2}}=\frac{\partial^{2} T}{\partial r^{2}} c^{2}-\frac{2 c s}{r} \frac{\partial}{\partial \varphi}\left(\frac{\partial T}{\partial r}-\frac{T}{r}\right)+\frac{\partial T}{\partial r} \frac{s^{2}}{r}+\frac{\partial^{2} T}{\partial \varphi^{2}} \frac{s^{2}}{r^{2}} \\
& \frac{\partial^{2} T}{\partial x_{2}^{2}}=\frac{\partial^{2} T}{\partial r^{2}} s^{2}+\frac{2 c s}{r} \frac{\partial}{\partial \varphi}\left(\frac{\partial T}{\partial r}-\frac{T}{r}\right)+\frac{\partial T}{\partial r} \frac{c^{2}}{r}+\frac{\partial^{2} T}{\partial \varphi^{2}} \frac{c^{2}}{r^{2}} \\
& \frac{\partial^{2} T}{\partial x_{3}^{2}}=\frac{\partial^{2} T}{\partial z^{2}}
\end{aligned}
$$

giving expression for the Laplace operator in the cylindrical coordinate system (use goniometric identity $\mathrm{s}^{2}+\mathrm{c}^{2}=1$)

$$
\frac{\partial^{2} T}{\partial x_{1}^{2}}+\frac{\partial^{2} T}{\partial x_{2}^{2}}+\frac{\partial^{2} T}{\partial x_{3}^{2}}=\frac{\partial^{2} T}{\partial r^{2}}+\frac{\partial T}{\partial r} \frac{1}{r}+\frac{\partial^{2} T}{\partial \varphi^{2}} \frac{1}{r^{2}}+\frac{\partial^{2} T}{\partial z^{2}}
$$

Coordinate systems (cylindrical)

Previous example demonstrated how to solve the problem of transformations to cylindrical coordinate system with scalars. However, how to calculate gradients or divergence of a vector and a tensor field? Vectors and tensors are described by 3 or 3×3 values of components now expressed in terms of new unit vectors

Einstein summation applied in
the cartesian coordinate system

$$
\begin{aligned}
& \stackrel{\stackrel{\mathbf{r}}{\sigma}}{\sigma}=\sigma_{m n} \stackrel{\mathbf{I}}{i_{m}} \stackrel{\mathbf{I}}{i}_{n}= \\
& =\sigma_{r r} e^{\mathbf{r}}{ }_{(r)}^{\mathbf{r}} e^{(r)}+\sigma_{r \varphi}{ }^{\mathbf{r}}{ }^{(r)} e^{\mathbf{r}} e^{(\varphi)}+\sigma_{r r} e^{\mathbf{r}}{ }_{(r)} e^{\mathbf{r}}+\ldots+\sigma_{z z}{ }^{\mathbf{r}} e^{(z)} e^{\mathbf{r}}{ }^{(z)}
\end{aligned}
$$

Unit vectors in orthogonal coordinate system are orthogonal, which means that

$$
e^{\mathbf{r}^{(r)}} \mathfrak{P}^{(r)}=1 \quad e^{(r)} \mathfrak{P}^{(p)}=0 \quad \ldots \quad \ldots e^{(z)} \mathbb{P}^{(z)}=1
$$

and therefore the components in the new coordinate system are for example

$$
\begin{aligned}
& u_{\varphi}=\stackrel{\mathrm{r}}{u} \underset{\boldsymbol{q}^{(\varphi)}}{(\varphi)}=u_{m} e_{m}^{(\varphi)} \\
& \sigma_{r z}=\stackrel{\mathbf{r}}{e^{(r)}} \stackrel{\mathbf{r}}{\mathbf{g}} \underset{\sim}{\mathbf{g}} \mathbf{e}^{(z)}=e_{m}^{(r)} \sigma_{m n} e_{n}^{(z)} \\
& u_{i}=u_{r} e_{i}^{(r)}+u_{\varphi} e_{i}^{(\varphi)}+u_{z} e_{i}^{(z)}
\end{aligned}
$$

Coordinate systems (cylindrical)

Transformation of unit vectors

Example: gradient of temperature can be written in the following way (alternatively in the cartesian and the cylindrical coordinate system)

$$
\begin{aligned}
& \text { substitute by using } \\
& \text { previously derived } \\
& \frac{\partial T}{\partial x_{1}}=\frac{\partial T}{\partial r} c-\frac{\partial T}{\partial \varphi} \frac{s}{r} \\
& \nabla T=\frac{\partial T}{\partial x_{1}} \stackrel{\mathrm{r}}{i_{1}}+\frac{\partial T}{\partial x_{2}} \stackrel{\mathrm{r}}{i}_{2}+\frac{\partial T}{\partial x_{3}} \stackrel{\mathrm{r}}{i}_{3}=\left(c \frac{\partial T}{\partial x_{1}}+s \frac{\partial T}{\partial x_{2}}\right) e^{\mathrm{r}}+\left(s \frac{\partial T}{\partial x_{1}}-c \frac{\partial T}{\partial x_{2}}\right) e^{\mathrm{r}_{(\rho)}}+\frac{\partial T}{\partial x_{3}} \stackrel{\mathrm{r}}{(z)}= \\
& =\frac{\partial T}{\partial r}{\underset{r}{r}}_{(r)}+\frac{1}{r} \frac{\partial T}{\partial \varphi} \stackrel{r}{r}^{(\varphi)}+\frac{\partial T}{\partial z}{\underset{\mathrm{r}}{(z)}} \\
& \nabla \equiv \stackrel{r}{e}_{(r)} \frac{\partial}{\partial r}+\stackrel{\sim}{e}_{(\varphi)} \frac{1}{r} \frac{\partial}{\partial \varphi}+\stackrel{\sim}{e}_{(z)} \frac{\partial}{\partial z}
\end{aligned}
$$

Coordinate systems (cylindrical)

$$
\begin{aligned}
\nabla \mathrm{g} u & =\frac{\partial u_{m}}{\partial x_{m}}=\frac{\partial\left(u_{r} e_{m}^{(r)}+u_{\varphi} e_{m}^{(\varphi)}+u_{z} e_{m}^{(z)}\right)}{\partial x_{m}}= \\
& =\frac{\partial u_{r}}{\partial x_{m}} e_{m}^{(r)}+u_{r} \frac{\partial e_{m}^{(r)}}{\partial x_{m}}+\frac{\partial u_{\varphi}}{\partial x_{m}} e_{m}^{(\varphi)}+u_{\varphi} \frac{\partial e_{m}^{(\varphi)}}{\partial x_{m}}+\frac{\partial u_{z}}{\partial x_{m}} e_{m}^{(z)}+u_{z} \frac{\partial e_{m}^{(z)}}{\partial x_{m}}
\end{aligned}
$$

components of unit vectors follow from the previously derived

$$
\begin{array}{lll}
e_{1}^{(r)}=c & e_{1}^{(\varphi)}=-s & e_{1}^{(z)}=0 \\
e_{2}^{(r)}=s & e_{2}^{(\varphi)}=c & e_{2}^{(z)}=0 \\
e_{3}^{(r)}=0 & e_{3}^{(\varphi)}=0 & e_{3}^{(z)}=1
\end{array}
$$

Note the fact, that the partial derivatives of these components with respect to x_{m} are not zero and can be calculated using the previously derived relationships

$$
\begin{array}{r}
\frac{\partial \varphi}{\partial x_{1}}=-\frac{s}{r}, \frac{\partial \varphi}{\partial x_{2}}=\frac{c}{r} \quad \text { giving } \frac{\partial e_{1}^{(r)}}{\partial x_{1}}=\frac{\partial c}{\partial x_{1}}=\frac{\partial c}{\partial \varphi} \frac{\partial \varphi}{\partial x_{1}}=-s \frac{s}{r} \\
\frac{\partial e_{1}^{(\varphi)}}{\partial x_{1}}=-\frac{\partial s}{\partial x_{1}}=-\frac{\partial s}{\partial \varphi} \frac{\partial \varphi}{\partial x_{1}}=c \frac{s}{r}
\end{array}
$$

Coordinate systems (cylindrical)

Substituting these expression we obtain

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x_{1}}=\frac{\partial u_{r}}{\partial r} c^{2}-\frac{\partial u_{r}}{\partial \varphi} \frac{c s}{r}+u_{r} \frac{s^{2}}{r}-\frac{\partial u_{\varphi}}{\partial r} c s+\frac{\partial u_{\varphi}}{\partial \varphi} \frac{s^{2}}{r}+u_{\varphi} \frac{c s}{r} \\
& \frac{\partial u_{2}}{\partial x_{2}}=\frac{\partial u_{r}}{\partial r} s^{2}+\frac{\partial u_{r}}{\partial \varphi} \frac{c s}{r}+u_{r} \frac{c^{2}}{r}+\frac{\partial u_{\varphi}}{\partial r} c s+\frac{\partial u_{\varphi}}{\partial \varphi} \frac{c^{2}}{r}-u_{\varphi} \frac{c s}{r} \\
& \frac{\partial u_{3}}{\partial x_{3}}=\frac{\partial u_{z}}{\partial z}
\end{aligned}
$$

Summing together, the final form of divergence in the cylindrical coordinate system is obtained

$$
\nabla \bullet \stackrel{\mu}{u}=\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\varphi}}{\partial \varphi}+\frac{\partial u_{z}}{\partial z}
$$

Coordinate systems (cylindrical)

$$
\begin{aligned}
& \stackrel{\stackrel{\mathrm{f}}{\pi}}{\pi}=\nabla \stackrel{\mathrm{r}}{u} \\
& \pi_{r r}=e_{m}^{(r)} \frac{\partial\left(u_{r} e_{n}^{(r)}+u_{\varphi} e_{n}^{(\varphi)}+u_{z} e_{n}^{(z)}\right)}{\partial x_{m}} e_{n}^{(r)} \quad \pi_{r \varphi}=e_{m}^{(r)} \frac{\partial\left(u_{r} e_{n}^{(r)}+u_{\varphi} e_{n}^{(\varphi)}+u_{z} e_{n}^{(z)}\right)}{\partial x_{m}} e_{n}^{(\varphi)} \cdots \\
& m \text { and } n \text { are dummy indices (summing is required) }
\end{aligned}
$$

Substituting previous expressions for unit vector and their derivatives results to final expression for the velocity gradient tensor in a cylindrical coordinate system

$$
\nabla u=\left(\begin{array}{ccc}
\frac{\partial u_{r}}{\partial r} & \frac{\partial u_{\varphi}}{\partial r} & \frac{\partial u_{z}}{\partial r} \\
\frac{1}{r}\left(\frac{\partial u_{r}}{\partial \varphi}-u_{\varphi}\right) & \frac{1}{r}\left(\frac{\partial u_{\varphi}}{\partial \varphi}+u_{r}\right) & \frac{1}{r} \frac{\partial u_{z}}{\partial \varphi} \\
\frac{\partial u_{r}}{\partial z} & \frac{\partial u_{\varphi}}{\partial z} & \frac{\partial u_{z}}{\partial z}
\end{array}\right)
$$

Coordinate systems (general)

Procedure how to derive tensorial equations in a general coordinate system.

1. Rewrite equation from the symbolic notation to the index notation for cartesian coordinate system, for example $\nabla \stackrel{\mathrm{r}}{u}=\stackrel{\mathrm{f}}{\boldsymbol{f}} \rightarrow \frac{\partial u_{j}}{\partial x_{i}}=\pi_{i j}$
2. Define transformation $\mathrm{x}_{1}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}\right), \ldots \mathrm{r}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right), \ldots$ and $\frac{\partial r_{i}}{\partial x_{j}}=f_{i j}\left(r_{1}, r_{2}, r_{3}\right)$ therefore also the first and the second derivatives of scalar values, for example ${ }^{\partial x_{j}}$

$$
\frac{\partial u_{j}}{\partial x_{1}}=\frac{\partial u_{j}}{\partial r_{1}} f_{11}+\frac{\partial u_{j}}{\partial r_{2}} f_{21}+\frac{\partial u_{j}}{\partial r_{3}} f_{31} \ldots
$$

3. Define unit vectors of coordinate systems r_{i} and express their cartesian coordinates $e_{m}^{(r i)}=g_{m}^{(r i)}\left(r_{1}, r_{2}, r_{3}\right)$ Calculate their derivatives with respect to the cartesian coordinates

$$
\frac{\partial e_{m}^{(r)}}{\partial x_{i}}=\frac{\partial g_{m}^{r}}{\partial x_{1}}=\frac{\partial g_{m}^{r}}{\partial r_{1}} \frac{\partial r_{1}}{\partial x_{i}}+\frac{\partial g_{m}^{r}}{\partial r_{2}} \frac{\partial r_{2}}{\partial x_{i}}+\frac{\partial g_{m}^{r}}{\partial r_{3}} \frac{\partial r_{3}}{\partial x_{i}}
$$

4. In case that the result is a vector, for example the gradient of scalar, calculate its components from

$$
u_{\varphi}=\stackrel{\mathrm{r}}{u}{\underset{\boldsymbol{g}}{ }}_{\mathrm{r}}^{(\varphi)}=u_{m} e_{m}^{(\varphi)}
$$

In the case that result is a tensor calculate its components

Remark: This suggested procedure (transform everything, including new unit vectors, to the cartesian coordinate system) is straightforward and seemingly easy. This is not so, it is "crude", lenghty (the derivation of velocity gradient is on several lists of paper) and without finesses. Better and more sophisticated procedures are described in standard books, e.g. Aris R: Vectors, tensors...N.J.1962, or Bird,Stewart,Lightfoot:Transport phenomena.

Tensors

You should know what is it scalar, vector, tensor and transformations at rotation of coordinate system

$$
\left[a^{\prime}\right]=[[\mathrm{R}]][a] \quad\left[\left[\sigma^{\prime}\right]\right]=[[\mathrm{R}]][[\sigma]][[\mathrm{R}]]^{T}
$$

(and how is defined the rotation matrix R ?)
Scalar and vector products

$$
\begin{array}{ll}
\stackrel{\mathrm{r}}{\mathrm{a}} \bullet \stackrel{\mathrm{r}}{b}=\sum_{i=1}^{3} a_{i} b_{i}=a_{i} b_{i} & \stackrel{\rho}{\mathrm{c}}=\stackrel{\rho}{\mathrm{a}} \times \underset{b}{\rho}=(\stackrel{\rightharpoonup}{\varepsilon} \bullet \stackrel{\rho}{b}) \bullet \stackrel{\rho}{a} \\
c_{i} & =\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} a_{j} b_{k}=\varepsilon_{i j k} a_{j} b_{k}
\end{array}
$$

(and what is it Kronecker delta and Levi Civita tensors?)

мНмт1 What is important (at least for exam)

Nabla operator. Gradient

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right) \quad \nabla_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}
$$

Divergence

$$
\nabla \bullet \stackrel{\rho}{u}=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}=\sum_{i=1}^{3} \frac{\partial u_{i}}{\partial x_{i}}=\frac{\partial u_{i}}{\partial x_{i}}
$$

Laplace operator

$$
\nabla \bullet \nabla T=\nabla^{2} T=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=\frac{\partial^{2} T}{\partial x_{i} \partial x_{i}}
$$

мнмт1 What is important (at least for exam)

Gauss integral theorem

$$
\iiint_{V} \nabla \bullet P d v=\iint_{S} n \bullet P d s
$$

(demonstrate for the case that P is scalar, vector, tensor)

