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thermal diffusivity

thermal dispersion

cross section

preexponencial factor of protein decomposition reaction
specific heat capacity

native protein concentration

denaturated (unfolded) protein concentration
protein agglomerate concentration

tube diameter

effective diffusion coefficient (dispersion)
diffusion coefficient (e.g. native proteins)
diffusion coefficient (e.g. unfolded proteins)
diffusion coefficient (e.g. agglomerates)
activation energy of protein decomposition

activation energy in Ebert Panchal model of crude oil fouling

Fanning friction factor
gravity acceleration
characteristic size of element
heat transfer coefficient

kn.kp,ka mass transfer coefficients

Esrr
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surface coordinate in a triangle
length of element i-j

mass flowrate

mass matrix or heat capacity matrix
base function

pressure

Peclet number of element

radial coordinate

universal gas constant =8.314-107
time

time step

temperature

wall temperature

ambient temperature

velocity components in Cartesian coordinate system
velocity components in cylindrical coordinate system
electric potential

volumetric flowrate

test (weighting) function

Cartesian coordinates

cylindrical coordinates

upwind correction coefficient
Ebert Panchal model coefficient
thermal expansion coefficient (=1/(273.15+T) for gases)
shear rate

Ebert Panchal model coefficient
thermal conductivity

structural parameter (thixotropy)
dynamic viscosity

density

stream function

vorticity
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4. THEORETICAL FUNDAMENTALS
4.1. Fluid flow, transport equations

4.1.1. Fluid flow formulated in terms of stream function

4.1.1.1. Stokes equation for creeping flow (CREE) A\V -

Creeping flow, i.e. flow at Re<l, is of only limited use, mostly for modelling flows of very viscous
liquids or flows in tiny geometry (nanotechnology). The formulation, based upon the stream function
v, has the advantage that the continuity equation is exactly satisfied. In the case that viscosity is
constant the problem is linear and velocity field can be solved in only one step — this solution can be
used as an initial estimate of velocities for solution of more complicated nonlinear problems. So far
only the simplest method CREE based upon cubic polynomial approximation of stream function in
triangular elements is implemented. In this case the second derivatives of y are continuous only in
nodes and not along the whole interface of elements.

The method is based upon principle of minimum dissipated energy, stating that the actual flow
field should produce minimum heat by viscous friction (and satisfy of course constraint of
incompressibility). The dissipated power can be expressed in a symbolic form as a function of velocity

F(ii) = 2[}];& - AdQ = %gy(Vﬁ (Vi) : (Vi + (Vi) )dQ | 4.1.1.1-1)

and velocity can be expressed in terms of stream function ' = (v, ,y.) by using operator rot
u=Vxy. (4.1.1.1-2)

What is the advantage of introducing three functions vy, Wy, y, instead of three components of
velocity? The velocity field described by Eq. (2) satisfies incompressibility constraint for any stream

function, because
. . 0’
Vi = V-(Vx ) = £, —A = 0. (4.1.1.1-3)
Ox,0x ;

It is therefore possible to express the dissipated energy as a function F(y) and to find the functions

Wy, Wy, W, by an unconstrained minimisation! This principle can be unfortunately applied only if the
inertial terms are negligible, therefore only for creeping flow.

Special case, which is implemented in FEMINA, concerns two-dimensional flows. Here the x
and y components of stream function are identically zero and only one component y,=y need to be
considered. In the following we shall describe the whole procedure in details, using index notation for
cylindrical and Cartesian co-ordinate system separately.

Cylindrical co-ordinate system

We shall consider axially symmetric flow of incompressible liquid in cylindrical coordinate system
r.x (symmetry axis x is horizontal in FEMINA). Velocity components can be expressed in term of
stream function'

! Special attention should be paid to symmetry axis (»=0). Radial velocity component u, is zero, however the axial
component u, must be evaluated as limit, i.e. as a second derivative of stream function in the radial direction r.
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3
u = l@_l// u. = _l@_l// [y = m—] volumetric flowrate . (4.1.1.1-4)
r Ox S

This definition automatically ensures that the continuity equation will be satisfied for any y

10,  ou. _y. (4.1.1.1-5)
r or Ox

Dissipated energy can be expressed as the following integral, see Bird, page.107
0 0 0 0
”%Mﬂ=ﬂwﬁwﬂ%”wiif+#%%+ﬁﬂ+ikf}mm W] (4.1.1.1-6)
or Ox r ox Or

which after substitution velocity components (4) into Eq.(6) yields functional expression:

pl, w1 3y, 10%ywoy. 'y 'y 1oy,
F =154 +— () ———— )+ (—% - +——)° |drd. 4.1.1.1-7
W) ” r{ ((8r6x) r? ( 6x) 7 Orox 8x) (8x2 or’ r 67") raz ( )

Varying dissipated energy with respect to the stream function and substituting approximation
w(er) =N, (xr,, S (x,r) = N, (x, )8y, (4.1.1.1-8)

we arrive to the system of linear algebraic equations (linear if the viscosity is constant)

Ay =0 (4.1.1.1-9)

J

where

4(82Nj azNi_FiaNJ aNi _Z aNJ’ azNi+aNi azNj +
2
Aij:,”ﬁ 87;8)6 8}’8); r° ox Ox ¥ Ox Orox Ox Orox vdx . (4.1.1.1-10)
r{ 90N, 0N, 10N, &'N, &’N, 10N,
ot T T T
ox or r or’  Ox or r or

Cartesian co-ordinate system

For planar flows (Cartesian coordinate system x,y) the formulation is even simpler

2
m

w = —] volumetric flowrate related to 1 m width of channel, (4.1.1.1-11)
S

oy ! Ox
0’N, 0’N, 8*N. 0°N. O’N, 9>N.

A[j :J‘Iﬂ ( 2] _ 2] 21 _ 21 +4 J i
oy ox oy Ox0y 0Ox0Oy

w =

drdz . (4.1.1.1-12)

Variable viscosity

Viscosity is the only material parameter in the previous formulation. If it is constant result would
be even independent of it. However if the viscosity depends upon temperature or even if it depends
upon the calculated velocity field these dependencies must defined as material function (using
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FUNDEF or CURDEF). Parameters of this function are temperature (variable TEMP) and second
invariant of rate of deformation (variable II), defined in Cartesian coordinate system as

0 0
11:(%)2 +(ﬁ)2 +l(%+&)2 (4.1.1.1-13)
ox oy 2 0y Ox

and similarly for the cylindrical coordinate system, see Bird page. 107

%(%#%)2 . (4.1.1.1-14)

ou ou u,
=2 + (50 + () +
ox or r
Note: The second invariant enables to calculate characteristic shear rate as
y =A211 (4.1.1.1-15)

and this expression can be used for definition of apparent viscosity in MPROP.

Implementation

In view of the fact, that second derivatives appear in integrands of (10), resp. (12) at least cubic
polynomial ensuring continuity of first derivatives (Bazeley 1965), must by applied. Local matrix A4;;
of a triangular element has dimension 9 x 9, which corresponds to 3 nodes and to the vector of nodal

parameters {y1 Wix Wiy W2 Wax Way W3 Yax Yay)

Results and postprocessing

Post-processing of calculated nodal parameters {y; yix Wiy} results in
e velocities uy, uy

e distribution of dissipated energy in individual elements according Eq. (7)
e total dissipated power F

O’N,O'N, 10N, ON, 10°N, 0N,

4( 2 -
F - J‘ J‘ M| “Orox Orox r- Ox Ox 2 r arazx Ox drdzy
Qel’ +(82Ni_azNi+laNi a N]_a Nj laN])
o> o ror ox* ot r or (4.1.1.1-16)

F=3}F, [W]

e distribution of the second invariant of the rate of deformation at individual elements according to
Egs. (13-14).
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4.1.1.2.Navier Stokes equations formulated by using stream function (PSIN)

“’ Wy ‘“ W Wy W Wy Wiy

This variant is a direct extension of the previous case, again only single equation for the stream
function v is solved, and the same base functions are used. Therefore the same restrictions follow from
the fact, that the very smooth base functions (cubic/quintic polynomials) ensure very smooth solution,
nevertheless problems appear when a flow field with discontinuities of viscosity are to be solved.
Another drawback: This approach is not suitable for the cases with distribution of flow into several
streams.

The method is derived from Navier Stokes equations and takes into account convective and
buoyant terms:

Navier Stokes: p% =—Vp+uVii+ [ Continuity:  V-i=0 (4.1.1.2-1)
.. - - Do, 2 . 2
Vorticity: @ =-Vxu, p Dr =uV'o, +0 Stream function: @, =V y (4.1.1.2-2)
. . . . . D 2 4
Final biharmonic equation for stream function: pHV v=uVy+Q . (4.1.1.2-3)
4

Resulting system of ordinary differential equations for nodal parameters y is obtained by
Galerkin’s method of weighted residuals with symmetric weights — no upwind technique is applied and
therefore it is necessary to use a very fine grid, so that the element Reynolds number restriction Rep<1
would be satisfied. In the following we describe the whole procedure in details, using component
instead of symbolic notation for the Cartesian and for the cylindrical co-ordinate system separately.

Cartesian co-ordinate system

Navier Stokes equations for incompressible Newtonian liquid have the following form written
in terms of primitive variables (velocities — pressure), see Bird pp.101

ou Ou, Ou, op o'u, 0’u N
Ttu —>+u )= ——+ <+ )+ pg (1- BT ——1] vol.force (4.1.1.2-4
p( o g T ay) . H( e yz) pg. (1= pT) [m3] ( )
ou, ou ou op o’u.  0'u
Yty —L4u —)=—+ L — )+ 1- 7). 4.1.1.2-5
PG, D) == S S+ g (1= ) (4.1.12-5)

These equations follow from the original equations of momentum balances (a conservative form) by
using continuity equation for incompressible liquid,

ou .
ogu, My o (4.1.1.2-6)
ox Oy

Pressure p can be eliminated from the Navier Stokes equations so, that we differentiate the momentum
balance in the direction x with respect to y, the second balance equation with respect to x and subtract
it from the first. Thus we arrive to the transport equation for vorticity
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0w=——— [-]  number of rotations of vortex per second (4.1.1.2-7)
oy  Ox s
ow 0w 0w ’w 0’ @ N
—tu, —+u = + —) . —] (4.1.1.2-8
A( a T m Yy o ay +pB(g, gx ) [m4] ( )

Weighted residual method can be applied to the vorticity equation using a test function W(x,y)

ow ow ’w 0w oT oT
”W{p(— —x+u)—)—,u( ) gxa—gya)}dxdy:o, (4.1.1.2-9)

and derivatives of vorticity can be transferred to the test function W by using Green theorem twice

2
”p W@_a)_a)(uxﬁ_W+uy8_W —ﬁa)(aW ow ——gy—) dxdy +
S ot Ox oy’ p ox°
(4.1.1.2-10)
+ j {pWa)(un +u,n )+,u[(a)a—W—W—) +(o a—W—W—) ]}drzo
I'=r,+I,+I, ax ay 6)/

Now we shall try to simplify the boundary integral. Boundary of region I" consists in the part I', where
vorticity is known (axis, inlet), wall I'y, and outlet I'y. The first term in the boundary integral (Wau,)
disappears at wall I'y, (¥=0) and at the part of boundary I',,, where vorticity is prescribed as a strong
boundary condition (W=0). Neglecting this term, the Eq.(10) reduces to

oo W W o OW 82 or or
ﬂp{W L N S S A2 gya )}dxdw
- (4.1.1.2-11)
+ j (a)E—W—)dF 0

I'=l,+I,+I
Vorticity m and velocity components can be expressed in term of stream function y from definition

2 2
u =W o, 0 OV 4.1.12-12)
’ Ox Ox oy

The stream function y can be approximated by base functions having integratable squares of second
derivatives (cubic polynomial in triangles are used)

w(x,y)=N,(x ;. (4.1.1.2-13)

It should be noted, that the coefficients y; in approximation (13) are not only nodal values of stream
function but also first or even second derivatives of y, which are necessary for ensuring continuity of
first derivatives at element interfaces. When using cubic polynomials N in triangles the continuity can
be satisfied only at nodes and not along the whole sides (Bazeley 1965, 9 DOF vy y y,). The
polynomials of at least 5™ order are to be used if the first derivatives are to be continuous everywhere

(BCH 1969, 18 DOF Y VYxVyVWYxx Yxy \lf,yy)-
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Identifying base and test functions W(x,y)= N,(x,y) , it means by using Galerkin method, the

Eqs.(11) reduces to the system of ordinary differential equations for nodal parameters ;

m, Y ay b 4.1.1.2-14
i AV T 0 (4.1.1.2-14)
Mass matrix M is expressed by integrals
ON. ON. ON. ON. ON
M, = [[ P —L+———D)dQ~ [ pN,—Ldr : (4.1.1.2-15)
5 Ox Ox oy Oy - on

and matrix of convective and diffusion terms 4 depends upon velocities u,, u,, which are to be
evaluated from previous iteration

0°N, 0°N, ON, ON. 0*N. 0°N,
A = L+ ! u Lhu —Y)+ Ly H)1dQ +
= [[ gt g et T S 5] i
O’N. O°N. | | 8N, &N, &N, &N, R
_Iﬂ[( = +—)(n, ON, +n, N, -N,(—"n, + SN+ n,+ 5 n,)}dr
: ox oy ox oy ox Ox0y Ox 0y oy

Boundary integral along I' is completely omitted in FEMINA; which means that only strong and
natural boundary conditions are respected. This is correct at inlet, at axis where n,=0 and vorticity is
zero, but problem represent part of boundary with unknown derivatives of stream function (unknown
velocities u,, u, at outlet) and also a surface of body inserted into the stream of liquid with zero
derivatives but unknown value of stream function.

Right hand side vector b; represents a source term - buoyancy

orT or
o Z)dQ
g, ax)

4.1.1.2-17
& ( )

b, =[] pBN, (2.

Approximating temperature field by linear base functions H the right hand side vector can be
expressed as a product of matrix B and vector of nodal temperatures

H,  oH,
~g,—1)dQ|T, = B,T,.

0
(4.1.1.2-18)
oy ox

b =| [[pBV (e,

Cylindrical coordinate system

The whole procedure can be in principle repeated even for the cylindrical coordinate system, see
Bird pp.102, momentum balance look like this

ou ou

ou
x4+ £+ 2 —+—— =)+ 1-pT 4.1.1.2-19
A( 5 g T ar) o PR R (r o )+ pg. (1= pT) ( )
ou ou, Ou op o’u, 0 ,10ru
~+ —+ )=——+pY—F+—(——) ]+ pg.(1- 4.1.1.2-20
plg e ot =) = ol S P g, (1= T) ( )
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Continuity equation in cylindrical system

P 0
Uy LM, o resp, Qe T M g (4.1.1.2:21)
ox r or ox o r

Vorticity equation

o= O . (4.1.1.2-22)
or Oox
ow ow ow wu, ’w 0 1orw oT
pl——+u, —+u,———")= u(——; —(——)) ﬂ(g,——gv—) (4.1.1.2-23)
ot Oox or r Ox

Weighted residual method, after application of Green’s theorem to the vorticity equation and
neglecting all boundary integrals, gives

I o2 potu, S, Z5) - g4 r SO0 - o, ﬂ(g,a—T—gx—)}dQ 0. (24
ox or ox’ 10

Vorticity will be expressed in terms of stream function

2
Loy, 1oy o= 1oV (4.1.12-25)
r oOx or r or r ox

y =

r or

Galerkin method with test functions W=N; yields again the system of ordinary differential equations
(14) with mass matrix

N, &N, oN,
”ﬁ ON O L ON Ny (4.1.1.2-26)

ox Ox or or

Q

and matrix of convective and diffusion term

10°N, ¢ 18 ON. 82N : 18N
Ay = | C—=+ L)+ (- )Q =
; jgjg — =D+ (St )]
10°N, 182N. 1 ON, oN, | a 0? N 82N 1 6N,
— j(_ 2] — 2] _ J u i Z)+ﬂ( Zu _ - l)]dQ
5 1 Ox r or or r or

(4.1.1.2-27)
Vector b; remains without changes.

Time discretisation

System of differential equations (14) is solved by implicit Euler’s method, giving the following
system of algebraic equations for each time step

(M, +Atd))y, =My} + AtB,T, : (4.1.1.2-28)
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Boundary conditions

Strong boundary conditions are represented by values and first derivatives of stream function .
These values are specified at wall and at inlet

|Cartesian coordinate system

3

|Cy1indrica1 coordinatesystem

2
_ r
v :“”z(l—ﬁ)a

=0, y,=0
(W =V ./t =0 weak B.C.)

3

— r
V.. = 2u (F_P)al//ax: 0

Calculation of pressure

Pressure distribution can be calculated ex post from the velocity field. Pressure is solution of
Poisson’s equation which follows from N-S equations (in this formulation viscous terms are eliminated

by continuity constrains):

+

o’p o*p o’y , 0wy oT or
——+2 - + —+g —)=0 . 4.1.1.2-29
o o p[(axay) v Gyz] PB(g, % He 8y) ( )

Boundary conditions for pressure at wall follow also from N-S equations

) 0’u 0 ou A
a—pw=ﬂa2y+pgy(l—ﬂT)=—ﬂaax+pgy(l—ﬂT)= Y
v Y (4.1.1.2-30) ?n
oy ow X
=— +pg. (1= BT) = -2+ pg (1-
U oxdy? pg,(1=pT)=-u o pg,(1-pT) >

0 ou o Ou
b= g (1= fT) = —p— ok pg (1= BT) = ,
4 (4.1.1.2-31)
o’y ow
=—pu—_—5+pg.(A-pI)=-pu—+pg.(1-pT)
0yOox oy

Equations (27-28) express the fact, that the normal derivative of pressure is determined by shear rate
along the wall and by the gravity forces.

Poisson‘s Eq. (26) can be solved by Galerkin method, using linear base functions H:
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- OH ; OH OH . OH ,
{J-(éH, _/+6H )dQ J’H( /nx+ Jn)dr}piz
ox Ox oy Oy oy 7 :
e . . (4.1.1.2-32)
. 0°N . .
Ly ) S+ L+ )T dQy
l//J) axz ayz l//‘]l//k] pﬂ(gx ax gy ay ) ‘]}

The same procedure can be applied for cylindrical co-ordinate system. Conclusions are similar,
Poisson’s equation for pressure looks like this:

62p Ou, Ou, Ou, Ou, ,u, 6T 1 8rT
- - + + )=
oxt r Or( ) 261 or ox Ox or C r Dl pBe ox )
o P,
=4+ —— 4.1.1.2-33
ox® r 6r( 8r) ( )
2p o’y 161//2 161/61/ o’y 10y 6w 1 orT
R R LS e, g =0
orox r Ox 7 Orox Ox 8x r or Or r

Applying Galerkin’s method to the Eq. (33) results in the following system of algebraic equations for
nodal pressures p;

{I (aH OH, OH,0H,

=10 jH(H My
r. —n .=
ox or P

L+ n +
ox Ox or *
N. 18N 10°N. 6N 18N. aN O°’N
2p J 2 J k J k
= (H (EP (L (= + o (4.1.12-34
J- { r Ox ) r OxOr Ox r or or? ) )l//’l//k] ( )

J

o, O
+ A
xS oy’

+pp(g,

Implementation:

Element matrices M;j 4; in the version PSIN have dimension 9 x 9, which corresponds to 3 nodes
with nodal parameters {y; Wix Wiy W2 Wax Yoy W3 W3x Y3y}. Matrix Bj; has dimension 9 x 3, which
corresponds to linear approximation of temperatures in triangular element.

Variant PSBL (not implemented yet) makes use of Bell’s polynomials of the 5™ order with 18
degrees of freedom in triangular element {y; Wix Wiy Wixx Wiy Wixy W2 Wax Yoy Waxx Woyy Waxy W3
W3x Wiy Wixx Wayy Wixy J-

Results and post-processing

Using nodal parameters {y1 Wix Wiy W2 Wax W2y W3 Wax Wayf, T€SP. {W1 Wix Wiy Wixx Wiy
Wixy W2 Wax Way Waxx Wayy Waxy W3 Wax Wiy Waxx Wayy Waxy |

e velocities
e pressures

are calculated in each time step and these results (y and derivative, velocities u,, u, and pressure p) are
recorded in file *.OUT.
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4.1.1.3.Navier Stokes equations — stream function and vorticity (Campion Renson)

Even in this chapter the stream function y will be used instead of velocities u, u,. However, the
single differential equation of the fourth order (biharmonic equation) for the stream function y will be
decomposed into two equations of only the second order: Poisson’s equation for stream function and
transport equation of vorticity. Fundamental problem is in the fact that the equation for stream function
has too many boundary conditions at wall (values and derivatives), while the vorticity equation too
few (none at wall). A trick how to resolve the problem has been suggested by Campion-Renson and
consists in the following: There is a space of base functions for the stream function y with
corresponding weights (W) and a space of vorticity functions with corresponding weights (W,). By
the word corresponding we have in mind properties of weight functions determined by boundary
conditions, it means that for example the weight functions W,, should be zero and their first derivatives
should be also zero at wall, because both the values and derivatives of y are zero. On the other hand no
constraint is applied to the weight function W, because vorticity at wall is not known in advance and
must be calculated. And now the trick: Weight functions W,, are applied in the weak form of vorticity
equation, while the functions W, in Poisson’s equation of stream function! The whole procedure can
be demonstrated using symbolic form of transport equation for vorticity and Poisson’s equation for the
stream function (we consider only 2D case where ® and y are z-components of vorticity and stream
function vectors):

Vorticity: p% = uV’0+0 Stream function: @ = V’y (4.1.1.3-1,2)
t

Weighted residual method, applying weights W,, to vorticity equation (1) and weights W,, to Eq.(2),
gives after little manipulation (Green’s theorem) weak formulation

'g(Wwp% + VW, -V @)dQ = lwaﬁ -V odl +ijWWQdQ (4.1.1.3-3)
and

[[vw, -vyaq=[w,i-vydr -[[W,ed. (4.1.1.3-4)

Q r Q

Boundary integral along wall in Eq.(3) is zero because W,, is zero, and the integral in (4) is also zero
because gradient  is zero at wall. Both integrals disappear at inlet and at axis because at this part of
boundary both W, and W, are zero (strong boundary conditions). At outlet natural boundary
conditions hold, corresponding to fully developed flow (zero tangential velocity).

A broad range of base functions can be used, for example simple linear polynomials for both
stream function and vorticity, because equations are of only second order. In this case it is also easy to
implement upwind by using Galerkin Petrov method with asymmetric weights (the same form of
weights could be in principle used for both equations, however the asymmetric form is approved only
in the transport equation for vorticity). The upwind improves stability of solution at higher Reynolds
number, when inertial forces prevail at a prize of decreased accuracy due to numerical viscosity.

In the following we describe the Campion Renson method in more details, for Cartesian and
cylindrical co-ordinate system separately.
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Cartesian co-ordinate system

Problem formulation is the same as that in the previous chapter. By eliminating pressure from
the Navier Stokes equations the following equation for vorticity transport is obtained

5
a):%—% (4.1.1.3-5)
X
860 a) 0w oT
—+ o _g 4.1.13-6
p( v T ay ay +pp(g, gx ) ( )

Velocities can be expressed in terms of stream function

L A (4.1.1.3-7)

and substituting into definition of vorticity (5) we arrive to the Poisson’s equation for stream function

2 2
w:‘g‘fﬁg‘f. (4.1.1.3-8)
X' ay

Problem is thus described by two differential equations of the second order, transport equation
(6) and Poisson’s equation (8). Vorticity, stream function and temperatures can be approximated by the
same base functions

o(x,y)=N,;(x,y)o,, w(x,y)=N,(x»y,, T(x,y)=N;(x,»T; (41.1.3-9,10,11)

Weight functions W, can be designed according to Zienkiewicz, Vol. III. pp.27, with
asymmetric part dependent upon the flow direction (upwind)

oh ON, ON,
W, (x,y)=N, + u, —+u ), 4.1.1.3-12
y (%, 5) 2|u|( o ay) ( )

where 4 is a characteristic dimension of element. The optimal value of o depends upon the local
Reynolds number of element (Pe is proportional to the element size)

a,, _cothPe——,  pe=lulhP (4.1.1.3-13)
Pe 2u

It is seen from (12-13) that the asymmetric part of the weight function is significant only if local
velocity and size of element are large. The characteristic dimension of element /4 is not quite strictly
defined — its value is calculated in FEMINA according to the following Eq.(14)

NL
S

zhz

<y

) (4.1.13-14)
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Weighted residual method consists in multiplying residuum of transport equation (6) by weight
function (12), integrating and using Green’s theorem to the second order derivatives. As a result we
obtain the following system of ordinary differential equations

A, =BT (4.1.13-15)

where the mass matrix M and the matrix of convective and viscous transfer 4 are expressed by
integrals

M, =[[pNNdQ (4.1.1.3-16)
Q

A . ON ; ON . ~ON . _ON .
- I{P[Ni ah (xGN, ON ; ON, ON;, ON, ON,
Q

+2 u 5 +uy8’)](uxaj+uya Fa— +a 5 }dQ
ul o 4 * 4 e o w (4.1.1.3-17)

| ON,  oN,
=[[|~v,+ ah_ 8N’+u aN) Bp(g, ; . (4.1.1.3-18)
o 2 ul ox Ox oy

It should be noted, that the boundary integrals disappear in Eq.(17) due to a clever choice of weight
functions W,,.

The same procedure applied to Poisson equation (8) results in the system of linear algebraic
(and not differential) equations

Dy, +C,0, =0, (4.1.1.3-19)
where
C, —HNN aQ (4.1.1.3-20)

ON, ON .
= ”(azv L N, Q. (4.1.1.3-21)
ox Ox 8y oy

Cylindrical co-ordinate system

The same procedure applied to formulation in cylindrical co-ordinate system gives vorticity
equation

ow ow oo u, 6260 0 1drw oT oT
—tu. —+u L )= — (—— —_——g — , 4.1.1.3-22
o( py u, L. )= p[ e ( )] pB(g, . g, ar) ( )

weight functions

W(x,y)=N,+ ah (uvaN’# oN, “’N") , (4.1.1.3-23)
2lul = ox “ oy r

and corresponding matrix of convective and viscous terms 4 and matrix of buoyant forces B
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ON, ON, N, ON u.N .
PN, + =2, S, =By, Sy, S
4 _”- 2|u| Ox or r Ox 0 r J0
;=
? W(aN,. N, N, aNf+&8Nf) . (4.1.13-24)

Ox Ox Or Or r oOor

ah ON, ON, N. ON . ON .
B.=|||N. + u Stu, ——u, — L — 1)dQ . 4.1.1.3-25
) H{ e T r)}ﬂp(g, L2 1) ( )

Poisson‘s equation for stream function in cylindrical coordinate system is

_ 0 1oy, 10

Cor r or r ox?

: (4.1.1.3-26)

and corresponding matrix D looks like this

ON. ON.
D, =H1(6Nl i, N, )dQ . (4.1.1.3-27)
o r Ox Ox or or

Time discretisation

Weighted residual method results in the system of ordinary differential equations for vorticity
transport (15) completed by the system of algebraic equations (19). Substituting time derivative by
time difference we obtain in each time step A¢ the following system of algebraic equations for nodal
parameters {j ;)

(M, +Atd;) )0, =M 0] + AtB,T, (4.1.1.3-28)
Dyy,; +Cyo,; =0

Boundary conditions:

Specify value of stream function at wall.
Vorticity is unknown and therefore nothing
is specified.

|Ca1‘tesian coordinate system

=i (l-——),0 = —4ii —
v (=222 e

RZ
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Implementation

The arrangement of coefficients in the element matrix is little bit unusual and follows from the fact
that the weight functions W,, are applied to the equation of vorticity and vice versa. For arrangement of
nodal parameters (®; Yi; @2 Y2 ........ ) the corresponding local element matrix has the following
structure with change-over rows (Wy1 Wo1 Wy2 Wy .....) — for example the matrix 6 x 6 for triangular
element with 3 nodes

I Cll D11 C12 D12 C13 D13 |
M, +Md, O M,+Ad, 0 M,+Ad, 0
Cy D,, Cy D,, Cx Dy (4.1.1.3-29)
My +Atd,y, 0 M, +Ady, 0 M, +Atdy, O
G Dy, Cy D, Ci Dss
| My + A4, 0 My, +Aid;, 0 My +Aid;; 0|
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4.1.2. Navier Stokes equation formulated in primitive variables

4.1.2.1.Velocities and pressure (UVP)

A classical method, which is frequently used for solution of Navier Stokes equations operates
not with the stream function and vorticity, rather with primitive variables: velocities and pressure. The
primary advantage of the stream function oriented methods is therefore lost and continuity equation is
not automatically fulfilled. On other hand the methods with primitive variables are easily applied to 3D
flows and further on it is possible to apply pressure boundary conditions and therefore to solve
problems with several outlets and problems when fluid flows around an obstacle. Simultaneous
solution of Navier Stokes transport equations (momentum transport) and continuity equation requires
to use hybrid elements with different form of velocity and pressure approximations. Higher degree
basis functions must be used for velocities and at least one order degree less polynomials must be used
for the approximation of pressure.

Cartesian coordinate system

Let us consider the following formulation describing 2D flow of an incompressible Newtonian
liquid

2 2
Ou, iy ou, i aux):_a_eru(a u, +8 u,

o0 T ox oy Ox o> oy’

o )+ pg.(1— BT) : (4.1.2.1-1)

(Guy ou, 8uy) op (82uy 62uy) (1— A7) 4.12.12)
+u +u =——+ + + - , 1.2.1-
Pl o e T T M ae T
and continuity equation
ou
Gy M . (4.1.2.1-3)
ox Oy

Weighted residual method with asymmetric weight functions (Petrov Galerkin), see
Zienkiewicz, part III. page 27, will be considered for momentum transport equations

u (x,y)=N,(x,yu,, u,(x,y)=N,(x,y)u,, p(x,y)=H;(x,y)p;, (4.12.1-4)
W(x,y)=N,+ ah (u, oN, +u, oN, ). (4.1.2.1-5)
2 ul ox T 0y

Parameter / is an characteristic dimension of element, and optimal value of dimensionless coefficient
a is a function of element Reynolds number (Pe)

o, =cothPe—t,  pe=l"1"P (4.1.2.1-6)

Pe 2u
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Optimal value of the coefficient a is a,p=Pe/2 for very small values of Peclet element number (in this
context the Peclet number is the Reynolds number of element), while for very high values of Pe the
optimal value of o, 1s approaching to one.

Higher order (quadratic or linear) polynomials Nj(x,y) are used as base (shape) functions for
velocities, while a lower order approximation H;(x,y) is used for pressure (linear or element-wise
constant). The reason why it is not possible to use the same base functions for velocities and pressures
is stability of solution and for example a simple triangular element with linear approximation of
velocities and linear approximation of pressure does not work. A simple explanation is that the second
derivatives of velocities (VZu) and only the first derivatives of pressure (Vp) exist in momentum
equations (Navier Stokes equations) and therefore polynomial approximation of velocities should be of
one order higher than pressure so that the both terms (VZu and Vp) will be of the same order. There

exist many possible combinations of N;(x,y), H(x,y) and only some of them are implemented in
FEMINA:

Triangular element P1P0 with midside nodes for velocities and a constant pressure in internal
node. This element is incompatible because velocities (and of course pressure) are not continuous,
however it usually works. Element is of the first order of accuracy.

This triangular element P1P0O usually does not work due to overconstraints. For example in a
regular rectangular mesh N x N the number of elements 2N is twice the number of velocity nodes
N* and because equation of continuity should hold in each element (2N constraints) there are no
free DOF which could be used for approximation of momentum equations (there are 2N of
internal ,,pressure nodes and the same number of velocities).

The situation is slightly better in the following element QIPO (bilinear velocities, constant
pressure), with 2N? velocities and only N? pressure constraints. This elements does not meet BB
requirement (Babuschka,Brezzi), however is simple and usually works (first order of accuracy).

One of the best elements is P2P1 (quadratic velocities and linear pressure), having a very good
ratio of 8N? velocities and N* pressures in N x N mesh. Element meets the BB stability
requirement and is of the second order of accuracy.

VAR SRS

@9 Element Q2(8)Q1 suggested by Hughes, Taylor. This element makes use biquadratic velocities (8-
' nodes, so called serendipity family) and bilinear pressure. The element is not very good according
O to our experience.

Similar, but significantly better is the element based upon Lagrangian polynomials with 9-nodes
for velocities, and bilinear approximation of pressure. The same ratio of velocity/pressure DOF as
in P2P1 triangular element is achieved (8N velocities and N* pressures).

For all these elements velocities and pressures are described by the following set of ordinary
differential equations

Guy N N
M, > +Au,; +Pp, =D (4.1.2.1-7)
a y
i, vPIp =b (4.1.2.1-8)
where
ah ON, ON.
M. = N, + u “tu YN .dQ = N.N .dQ . 4.1.2.1-9
= ot G I A=V, (41219
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Remark: Neglecting asymmetric term in Eq.(9) is only an approximation, however at least distortion of
the diagonal term in the mass matrix is zero, because asymmetric part is an odd function.

4 A ON . ON . _ON . _ON
4, =[[| pIN, + e Ny Ny, D Sy VO OV O g
2Qu| “ox 7 oy ox 7 oy ox ox oy Oy
(4.1.2.1-10)
ON .
_I,UN,‘ ./dr
on

r

The asymmetric part is ignored in the viscous term — in this case it is substantiated: Curve integral is
zero at wall (Ni=0), at a symmetry axis (ON;/on=0), at inlet (V;j=0) and can be nonzero only at outlet as
soon as the velocity profile is not fully stabilised. The same holds for curve integrals in the following
relations for coefficients of matrix P, corresponding to the pressure gradients in NS equations:

| 0H
” ah (u, N, +u,6Nl) ; dQ+J'H].Nl.nYdF (4.1.2.1-11)
ax 2 ul ox oy’ ox S
4 OH
pi;—”{ ; L 8N’+uy N,y ’}dQJrJ-HjNinde . (4.1.2.1-12)
ay 2Iul oy g

Remark: In this term the Green’s theorem has been applied only to the symmetric part of weighting
function. The resulting term with first derivatives of H; is omitted.

:” N, + ah (u, aN"wy aN") pg . (1- BT)dQ (4.1.2.1-13)
S 2|u| Ox oy }
ah ON, ON,
by =||| N, + -+ ’ 1= BT)dQ : 4.12.1-14
1 U[ Tt )}pg}x A1) ( )

Pressure base function H; are applied to the continuity equation as weight functions

Qiu, +Qlu, =0 : (4.1.2.1-15)

where
Q, 0; =[]
Q

Matrices Q are except for sign identical with the transposed matrices P not taking into account
asymmetry terms of test functions (i.e. when a=0).

;= (4.1.2.1-16)

lay ‘

Cylindrical coordinate system

The same hold in principle for flow description in the cylindrical coordinate system with
Navier Stokes equations in the form

ou ou ou op ’u, 10
x4 x4 Xy= L 4 * 4 4.1.2.1-17
PO T T ) T T T e Ty A7) ( )
2
o, O Ou Op O, +£(la’”“r )+ pg. (1- BT) (4.12.1-18)

ot Y Ox " or or ox> or r or
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and with the continuity equation

ou, +18rur 0. (4.1.2.1-19)
ox r Or

We shall apply weight functions W(x,r) to the momentum balances in the x,7 directions

Ou ou ou o’u, 10 8u op
w =+ =+ =) — =+ —dQ = ||Wpg (- pT)dQ2 (20
g[matux& =)= M r ~ ﬂ'@x BT)dQ (20)
ou ou ou o’u, 0 10ru,
| e e e = »Mzﬂwpm [[wee. 0= pr)ac
o ot ox or ox Q1)

and decrease the second order of derivatives in the viscous term by using Green’s theorem

”[Wp(aux ru, ou, ru 8ux)+lu(8ux ow N ou, OW W Ou, )]dQ+HW8—de _
o ot Ox or ox Ox Or Or r oOr o Ox
5 (4.1.2.1-22)
= [[wpe.a- 2
Q
”[Wp(au, ru, ou, ru au,)+ ﬂ(éur ow N ou, oW +u_,8W)]dQ+”W8_de _
o ot 0ox or ox ox Or or r oOr or
1 3 (4.1.2.1-23)
= {[wpe, (- ™ p,)dr
5 r r
Substituting weight functions with the asymmetric upwind part
oh ON, ON,
W(x,r)=N, + (u ~+u, —) (4.1.2.1-24)

2Mu| " ox " or

we arrive to the momentum balances in the x,7 directions described by the following system of
ordinary differential equations

ou, R
i az gy T B p; =Db; (4.1.2.1-25)

s gy + PPy =b] (4.1.2.1-26)

The mass matrix M is identical for the both equations

ah ON, ON,
M, = N, + u ~+u, —)N,dQ =|| pN,N ,dQ2 4.1.2.1-27
o = [N s O A= [ NN ( )

(with the same simplification as in the Cartesian coordinate system),

while the matrix 4 differs slightly in the x and » direction
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! ON, ON. ON . ON ON,ON, ON,ON, N ON.
A;:J‘I ,O[Ni'i‘ ah (u( /+ur Nt)](ux ]+ur j)+,u( i J+ i /__l_j) da) +
o 2|lu| ~ oOx or ox or ox Ox or or r or
| ON,
G
(4.1.2.1-28)
: A ON ON ~ON; ON, N
a7 =[] o, + 2, ey, Ry, Sy Ty (T AT T Ny
TS 2|u| Ox or ox or ox Ox or or r or
ON . 1 OrN,
[N, (—En, +=—Ln,)dr
v Ox r or
(4.1.2.1-29)

Matrices P as well as right hand side vectors are the same as in the Cartesian coordinate system

| OH
” ah (u, aNl L, aN') LdQ+[ H N,n 4T (4.1.2.1-30)
/ 6x 2|u| or  ox L
| OH
(uxaN’+u,aN’) L1dQ+[ H N,n,dT (4.1.2.1-31)
ul ox or " or !
= j N, + Nf u Ny pg.(1— BT)dQ (4.1.2.1-32)
2|u| " or
- J.{N +2| | N"+ aév )}pgr(l—ﬁT)dQ : (4.1.2.1-33)
u

Integral form of the continuity equation is based upon symmetrical weight function H;
Qiu, +Qu,, =0 (4.1.2.1-34)

where

Q, 0 = ” ia;r . (4.1.2.1-35)

ij:

Matrices Q are except for a sign identical with the transposed matrices P as soon as the asymmetric
part of weight functions is zero (a=0).

Time discretization

Result of MWR is the system of ordinary differential equations (7-8), resp. (25-26), completed
by algebraic equations (15), resp. (34). Using implicit Euler’s method for substitution differential
equations by difference equations we arrive at the system of algebraic equations

(M +Atd )u; +AtPS p. = M u), + Ath; (4.1.2.1-36)

(M, + Atd ), + AP p, = M’ + Atb} (4.1.2.1-37)

57y
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completed by continuity equations (15), resp.(34) in the form

AtPu, + AtPJu, =0 (4.1.2.1-38)

Jittag
making use equivalence of matrices P and Q.

Implementation

The UVP method is implemented for several kinds of hybrid elements, triangles with 6 and 4
nodes and quadrilaterals with 5, 8 and 9 nodes:

e Nodal parameter vector for 6 node triangular element has the following structure
{ux1 Uy1 P1Ux2 Uy2 P2 Ux3 Uy3 P3 Uxa Uys Uxs Uys Uys Uys §, and corresponding element matrix has dimension
15 x 15, see the following figure.

ay, 0 Iph|ay, O |py|as O |ps|lay, 0 a5 0 ag 0
0 gy |pi| 0 a) |ph| 0 af |ps| 0 ay 0 a 0 a
pi P |0 Py Py | O py pu | O pa Py P Ph P P
ay 0 |pylayn O |pn| ay 0 |py|lay 0 a5 0 ay 0

y y y y y y y y y
0 ay |py 0 ayn |pn| 0 ay |pn 0 ay 0 as 0 ay

P Ph | 0| Py pPu| 0| pn pn| 0| pn Pn Pn Ph Po P
a;l 0 p; as, 0 péYz a; 0 p§3 a;4 0 ags 0 a;ﬁ 0

y y y y y ) J
0 a5 |psy 0 a3 |pn| 0 ap | pn| 0 aj 0 ay 0 ay

T ¥ ¥ x v x ¥ x ¥ x ¥

P Pis | 0| Py Py | 0| Py Py | 0| pis Py Psy Pss Pss Pas
X X P X X X X X P

ay 0 |pyjap 0 |py|ay 0 |pylay 0 as 0 ag 0

o
% 2 =]

y y ) y y y y v v
0 ay |pi 0 ay |pn| 0 ai | Py 0 ay 0 a 0 ay
X X X X X X X X
as 0 |p5| as, 0 | ps| as 0 |ps;| as 0 as 0 ag 0
y y ¥ y y ) )
0 a5 |ps 0 a5 |pn| 0 ag; | ps;| 0 as 0 as 0 ag

X X X X X X X X
Qg 0 |pa| as 0 | pol| as 0 | pol| au 0 ag 0 ag 0

y y y y y
0 a5 |pa 0 ag, |pu| 0 ai |pa| 0 ag 0 ag 0 g |

R

Symbols a;; are elements of matrix 4 with dimension 6 x 6 (base functions N; for velocities), and p;; are
elements of matrix P (6 x 3), corresponding to 6 base functions N; and three base functions H; for
pressure:

e Nodal parameter vector for 4 node triangular element (3 nodes velocities, internal node for
discontinuous pressure) has the following structure {uy; uy1 Uy Uy Ux3 Uy3 psa}, and corresponding
element matrix has dimension 7 x 7.

Results of processing and post-processing

No post-processing is carried out in UVP operation, the only results are nodal velocities and
pressures saved in individual time steps into file *.OUT.
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4.1.2.2. Velocities and pressure — pseudo-compressibility method (UVPP)

This method, implementation, and also applications are nearly the same as in the standard UVP
method described in previous chapter. The only difference is in a modification of continuity equation
where a pressure is introduced.

Dii L . 1dp
= = _Vp+V-uVii+ pg(l— BT), Veii=——2 4.1.22-12
P, P u pg(1-pT) 1 ( )

The modified continuity equation is related to the continuity equation for compressible fluids

~ 1 Dp p
V.u =———, = + — , 41.22‘3,4
» Dt P =Py o2 ( )

where p is density, which can be approximately related to pressure p and speed of sound ¢, giving

L_Dp

Vei=——+ ,
poc” Dt

(4.1.2.2-5)

and this equation corresponds to Eq.(2). It is seen that the parameter A ~ poc” is to be very high in
liquids, where speed of sound is of the order 10° [m/s], density is also 10° [kg/m’], therefore Ax10°!

It is not necessary to repeat all steps and details of derivation, because it is very similar to the
previous case described in chapter 4.1.2.1. Only explanation of possible benefit: UVPP method should
result in a system of equations which are identical with the UVP matrix with the exception of diagonal
terms in rows corresponding continuity equations. Zeroes in UVP are replaced by non-zero values
(their magnitude depends first of all upon specified value of A-parameter) and the system matrix
should be better conditioned — “more regular” with a positive effect for example upon the influence of
round-off errors.
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4.1.2.3. Navier Stokes equations penalty method (PENS)

By using rather drastic modification of the continuity equation it is possible to completely
eliminate pressure from the Navier Stokes equations. The method is known under the name penalty
method and therefore the identifier PENS (PENalty Navier Stokes) is used in FEMINA.

Cartesian coordinate system

Let us consider the following form of Navier Stokes equations for Newtonian liquids

v, Moy P, (‘32”»*+82”»*)+ (1— BT) (4.1.2.3-1)
o T ey T ) T o TG T ) T R

Ou Ou Ou - o 0’ 82uy

: (s
ot Tox T oy oy ox® oy’

)+ pg, (1- BT). (4.1.2.3-2)

Continuity equation for incompressible liquid is substituted by equation

=—=, A[Pa.s] has dimension of volumetric viscosity (4.1.2.3-3)

where A is a penalty parameter, which should be so large, that the right hand side, residuum of
continuity, is nearly zero for typical values of pressure p(x,y). The minus sign corresponds to the fact,
that expansion of volume (positive value of divergence of velocity) implies under-pressure. Correct
choice of parameter A decides, whether solution will be successful or not. Too small value means, that
the continuity equation will not be fulfilled, and on the other hand too high value suppresses
momentum balances, because in that case all equations are reduced to the continuity requirement and
this is not enough to ensure uniqueness of solution (too high value of A entrains a loss of convergence).

Substituting for pressure p from Eq.(3) into momentum balances (1,2), the following pair of
equations for unknown velocity components will be obtained

ou ou ou o’u. 0u 0’u.  0u
x4 x4 =1 x4 Y + 4 ) 4+ 1- BT 4.1.2.3-4
PG S, S = A D e T g (- ) (4.1.2.34)
ou ou ou 0*u 0u 0’u. 0'u
Y4 L Py = (x4 Yy + S L)+ 1- BT ) 4.1.2.3-5
o( 5 Theg T ay) (axay o )+ u( a2 T o )+ pg, (1= pT) ( )

Weighted residual method with asymmetric test functions (Petrof Galerkin), see. Zienkiewicz,
III. str.27 can be applied to previous equations, giving

u (x,y)=N,(x,y)u,, u,(x,y)=N,;(x,»)u,,, , (4.1.2.3-6)
aoh ON. ON.
W(x,y)=N. + u “t+u 2y, 4.1.2.3-7

where / is a characteristic dimension of element, and for optimal value of o holds
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aop,:cothPe—L, Pe=|u|hp.
Pe 2u
More or less arbitrary polynomials (linear, quadratic,...) which need not satisfy continuity of
derivatives can be used as a basis N;(x,y) for approximation of velocities.
Momentum balances in directions x,y are represented by system of ordinary differential equations
for unknown nodal velocities

(4.1.2.3-8)

8u ;
i 8t Uy +Bju, =b; (4.1.2.3-9)
y 81‘ Ju,+Plu, =b' (4.1.2.3-10)
where
M, = [[ pN,N,dO
a (4.1.2.3-11)
i . A ON oN ON . ON
~{f] oty + ah (uxaN, aN,)](ux v, 4 @V f)(y+/1)+yaN’ NS
il 2|ul 0 oy 0 oy ox Ox oy 0oy
(4.1.2.3-12)
i ah N,  ON,_ ON, 0N ON, ON ON, |
4; = N, + Lt ’ L Dy L —D)(u+ ) + p(—=—L) [dQ
”_p[ o e Ty Mg i ) F g e D P )_
(4.1.2.3-13)

Effect of asymmetric weight functions upon viscous and upon pressure terms has been ignored in
preceding integrals. This is a pragmatic simplification, because otherwise the application of Green’s
theorem would cause appearance of second derivatives in integrands. The same holds for the following

_ __”{ }m.

Asymmetric weight function can be preserved in the right hand side vectors, describing contribution of
buoyancy

ON, ON,
ox Oy

ON, ON
8y ox

(4.1.2.3-14)

=” N, + ah (u, N, }aN) pg . (1— BT)dQ (4.1.2.3-15)
5 2| ul o Ay ’
ah . oN, N,
b’ =||| N, + .y 1- AT)dO 4.1.2.3-16
1 U[ e e )}pg}x A1) ( )

Formulation in Cartesian co-ordinate system is now completed.

Cylindrical co-ordinate system
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Navier Stokes equations (X is the axis of cylindrical system) look like this

ou, ou, ou, op o’u, 10
+ o+ =+ u[—+
Al ot B Ox ur or ) Ox Hl ox>  ror AT
2
LT T SR Y LA (1- pT)

oo T ox " oor or o’ orr o
and modified continuity equation

ou N 1 0ru, P

X

ox r Or A

Matrices 4, P are described in this case by integrals

A OoN. oN.
PN, + ah (u, N, tu aN,)](ux Loy )+

4 ZJ-J- 2|u| ox or ox or 40
o o +/1)(8Ni aNf)+ (aN ON; A ON,
L H Oox Ox H or Or r or i
i _ _ ON . oN. ]
PN, + Z“h (u, aév L aév e, — J b, — ) 4
Ai; :” || X r r 0
S0 n (% N, Y+ (u+ ,1)(% N, N_ai)
L a Oox Ox a or Or r

AHFN o, —N ai}d(!

ox or r Ox
ON, ON
=1
meaf e
while the right hand side vectors remain without changes.

Time discretisation

(4.1.2.3-17)

(4.1.2.3-18)

(4.1.2.3-19)

(4.1.2.3-20)

(4.1.2.3-21)

(4.1.2.3-22)

(4.1.2.3-23)

Substituting time derivatives in Eqs.(9-10) by first differences, we arrive to the final system of

algebraic equations for nodal velocities in each time step:

(M + AtA; Yy, + AtPu,, = M, + Ath]

iy

(M, +AtA)u, + AP u, = M ', + Ath} .

iy

Implementation

(4.1.2.3-24)

(4.1.2.3-25)

On contrary to previous hybrid elements (combining nodal parameters for velocities and
pressure) it is possible to use a broader range of base functions in the penalty method. Therefore the
method PENS is implemented for triangles and quadrilateral elements, having arbitrary number of

nodes.
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Results and postprocessing

There is no postprocessing implemented in the method PENS so far, the only results are
velocities saved during solution into file *.OUT in each time step.
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4.1.3. Temperature field in a known velocity field with ohmic heating
7
A 5 EZ H |
6 8 6
T
1 ) 4 1 1 5 4

Transport of heat by convection and conduction with volumetric heat /4__
sources is described by the Fourier Kirchhoff equation for temperatures.
This equation can be written in cylindrical coordinate system as

oT oT oT o .0T. 120 oT ou_, oU,,
—tu, —+u, —)=—A—)+——Wr—) +x[(—) +(—) ]+ 0 - 5T, 4.1.3-1
pcp(at “x Ox “r 6r) Gx( 8x) r@r(rﬁr) K[(Gx) (8r)] Q ( )

where the source term is expressed as the sum of electric heat (U is an electric potential) and the term
0, defined by user as a function. The last term S7 is a sink defined also as a user function S.

Let us assume that heat is transferred from a part of surface (boundary I') as described by the
boundary condition of the third kind (7. is ambient temperature, & is heat transfer coefficient)

/la—T:k(Te—T). (4.1.3-2)
on

The Eq.(1) together with the boundary conditions (2) can be reformulated by weighted residual
methods, giving weak formulation of the problem

+u, O, s sTy+ 4 2L, 8—T8—W)}drdx — [rWK(T, ~ T =
or ox ox Or or v
(4.1.3-3)

oT oT
W ——tu, —
jgjr{ Lpe, (54—

= [ CD? + %)+ Qs

Temperature 7 will be approximated by the base functions N; and asymmetric weighting functions W;
will be designed according to Zienkiewicz

ON. ON.
Wix,y)=N, + ah (u, N, +u, N’), (4.1.3-4)
2| u| Ox or

ulh
where the coefficient ae(0,1) depends upon the local value of Peclet number Pe = % .
Thus we arrive to the system of ordinary differential equations for unknown nodal temperatures
Ti()
ar,
Ml.j7+AijT,. =b, (4.1.3-5)
t
where
M, = ” pc,rN;N ,dQ (this is only an approximation replacing W; by N;) (4.1.3-6)
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ON . ON, ON,
")+SN.]+/1(8N’ i, N, D)ldrdx + [ rkN,N T (4.1.3-7)
or / ox oOx Or or ! /

ON
A4, = ||riw, L+
o =[[rthiloe, v,

b, = ””W, {K[(%—U)2 + (aa—U)2 1+ Q)drdx + IrkTeNidT (also an approximation of W; by N;). (4.1.3-8)
Q X r r

The ordinary differential equations (5) can be solved by the one step Euler method as
(M, +67MA,)T, =[M; —(1-0)Atd, 1T} + Ath, . (4.1.3-9)

It is obvious, that the formulation in the Cartesian coordinate system is identical, only the
multiplication by radius 7 is omitted in integrands. Also the 3D elements are designed in the same way,
only with different base functions.

Fouling in 2D and 3D elements

Special arrangement of previously described elements concerns fouling at a boundary, which is
described by a modified boundary condition of the third kind (2). It is assumed that the boundary is
formed by a thin layer of deposits characterised by a thermal conductivity A; and electrical conductivity
Kr (changing thickness of this layer is calculated in a similar way as in the 1D elements PIPE2D and
stored as an element parameter). It is assumed that this layer represents not only a passive thermal
resistance but also a volumetric heat source caused by ohmic heating. Assuming a constant intensity of
electric field (therefore a uniform volumetric heat source), and also uniform thermal properties of
layer, the temperature profile across the layer will be a quadratic and the electric potential a linear
function.

Neglecting heat accumulation in the layer, the temperature profile is described by equation

o°T u,-uU,

oz/lfax—2+Q, O=x( p )? (4.1.3-10)

Te, kTe Tw

where Ut is voltage at the backside and Ui, at the frontside of layer. ke | %
Now it is assumed that on the backside of fouled layer a finite < = kfﬁfg

thermal resistance as well as a finite electrical resistance exist, ﬁl% A

expressed as

oT,
iy Pt - ;
Ay =k (T =T)) (4.1.3-11) MM\

T¢
FITITITI'({ [

assuming again a linear profile of electric potential inside the layer. Taking into account boundary
conditions at interfaces on the back and the front side of layer, the unknown values of temperature 7%
and potential Ur can be eliminated, giving new boundary conditions for the electric field U

K
U, -U Yk, = Tf(Uf ~U,), (4.1.3-12)

k kgx .
Ka—U:%(Ue—UW):E—f(UE—UW) (4.1.3-13)
on 14k, K, +kgh
Ky
and for the temperature field
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k, A,
la—T=;[T +@ —+—)—Tw]=Te—/[Te Qh( + ) 7,1, (4.13-14)
on L+i Ay kg 2 Ay +kph A, ko 2
ky, A,
where the volumetric heat source Q is expressed in terms of presumably known voltages
2

K Kk
o=—7,'—w,-v,y=—"""*—-U,-U,). (4.1.3-15)
h2(1+ Kf )2 (Kj +kEeh)
hk .,
Temperature profile inside the layer is described by equation

Te

1o A hi, ¥
Tx)=T +—[A—(—+x)+O0(—=+ hx ——)]. 4.1.3-16
(x)=T, if[ . ( i x) + O( i X )] ( )

Taken together, fouled layer must by described by its thickness h (element parameter), A¢, k¢ (material
properties) and also the parameters kr., kge (functions), Te, U. (RCONST) must be specified.

Model of fouling describes the rate of fouled layer growth by a user function f{T,t,cx,...) in a
similar way as for 1D elements (index of this function must be specified as an OPTION parameter)

%:fﬁﬁwy (4.1.3-17)

Implementation.

Triangular elements with three and six nodes (T3,T6) and quadrilateral elements with four or
eight node elements (Q4,Q8) as well as eight and 20 nodes brick elements (B8, B20) are available for
2D and 3D models. Base functions in triangular elements are calculated by subroutine FDFT,
isoparametric functions are defined in FDFQ in quadrilaterals, and FDFVL is used for 3D.

Integration is carried out by Gauss method, and different number of integration points can be
selected: 1,3,4,6,7,12,16 for elements T3,T6, 1x1, 2x2, 3x3, 4x4 for elements Q4,Q8 and 1xIx1,
2x2x2, 3x3x3, 4x4x4 for elements B8, B20.

Boundary conditions of the third kind are included in the boundary integrals (7-8), calculated
simultaneously with surface integrals when processing triangular or quadrilateral elements. The most
difficult problem is identification of the element sides forming a part of the boundary I'. This problem
is solved on the basis of information about nodal parameters: The fact that the status of a nodal
parameter (IPU) is greater than 20 means that it is a node with prescribed boundary condition of the
third kind. In case of elements with nodes at midpoints of sides (T6, Q8) the status of mid-nodes
determines whether the corresponding side is, or is not a part of boundary with prescribed boundary
conditions of the third kind.> More complicated is the case of triangular element T3 having two sides
as a part of boundary (this element forms a corner of a region), because then all three nodes of element
lie on the boundary and the common node of the two boundary sides must be identified by inspection
of the whole connectivity matrix of elements (the node in the corner should not be located in any other
element).

As soon as the element sides forming a part of boundary I' are identified, the curve integrals (7-
8) are calculated by Gauss integration of base functions defined by procedure FDCR. Because the heat
transfer coefficient & in (7-8) is referenced by a status of nodes and because this status is interpreted as
the index of user defined function (function number 21,22,...), the heat transfer coefficient can be a
function of temperature, time, concentrations, and other variables.

* Negative values IPU indicate strong boundary conditions (directly specified temperatures), values 0 and higher indicate
free parameters. Indices greater than 20 define weak boundary conditions of the third kind.
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4.1.4. Phase changes

Heat transfer with phase changes can be modelled using previously described method for heat
transfer without phase changes when defining temperature dependent specific heat capacity with a
sharp peek characterising a sudden enthalpy increase at a phase change temperature. This approach has
been described in the introductory example, and therefore it will not be discussed here. We only note
that this seemingly simple method is applicable only for a sufficiently smooth phase transition without
step enthalpy changes. In this chapter we focus upon description of a sharp transition (melting or
freezing) characterised by two parameters: temperature of phase change 7y and the enthalpy of liquid
just at this temperature /Ay (this value is the sum of enthalpy of fusion and the enthalpy of solid at
melting point temperature).

Enthalpy balance for cylindrical coordinate system and incompressible liquids can be written in
a general form which is nearly the same as the Eq.(1) in the previous chapter

oh oh oh 0 oTr. 10 oT ou , oU,,
—tu —+u —)=— A+ —— () +k[(—)* + (=) 1+ O - ST (4.1.4-1
p(ﬁt “x Ox “r 8r) 8x( Ox) r@r( r@r) K[(ax) (8r) I+0 ( )

The difference is in the fact that there are two unknown variables, specific enthalpy % [J/kg] and
temperature 7, related by the equation

Ty T
h=[c,dT+rg + [c,dT. (4.1.4-2)
0

Ty

There are several ways how to solve this system of equations by finite element methods. It is for
example possible to approximate temperature and enthalpy as independent functions and to formulate
element matrices for two nodal parameters 7; and #; — this approach can be selected in Femina as the
option Phase changes=1.

Options Phase changes=2,3,4,5 calculate only temperatures from the modified Eq.(1)

dh T or oT. o . oT. 10 .. 0T oU., oU.,
—(—tu,—+u, —)=—A—)+——Wr—)+x[(—) +(—) ]+ 0 -ST 4.1.4-3
Par o T T o) T ) TR M) TR ) H (10 ( )

where the derivative of enthalpy with respect temperature is approximated by different formulas, see
Lewis (1996)

o, o

)+ ()’
Phase changes=2 dn e or (4.1.4-4)

TNy (e

ox or
on\ (onY
Phase changes=3 dn - e + or (4.1.4-5)
aT or or 1.
ox or
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oh  ©Oh

dh _1lox , or
P =4 4.1.4-
hase changes T2 6T oT ( 6)
o or
oh 0T o©ohoT
i o or or
Phase changes=5 —— =X Ox ror (4.1.4-7)
dr oTr ., ,oT
() + ()
ox or

Spatial derivatives of enthalpy /4 in Eqgs.(4-7) are approximated by nodal enthalpy #4; calculated only
temporarily from actual nodal temperatures 7;

@j&
ox ox 7’

where hj=c,T; for I;<Tw else h=hmtcy(Ti-Tm) (4.1.4-8)

From now on the numerical solution is the same as in the previous chapter, it is nodal temperatures at a
new time level are calculated from the old temperatures solving the system of equations

(M, +6OMA)T, =[M, —(1—0)AtA, 1T + Ath, (4.1.4-9)

where

—”p—rNN dQ (4.1.4-10)

ON, ON aN ON

A, = || rmilp— oN, o, A drd kN, N ,dT" (4.1.4-11

”r{ ,0 (u P —tu, P» At — )] rx+jr ( )
oU., oU.,

b, = jgj AL G (6r) 1+ Oldrdx + j kTN dT . (4.1.4-12)
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4.1.5. Electric potential distribution

7
3 . 7 ]
: E 8 6
_/_ i k:U
1 2 4 1 I\ 5 4

Electric potential distribution is not a transport problem; however its solution is a necessary
prerequisite for solution of heat transport equations (direct ohmic heating).

The distribution is described by the Laplace equation, expressed e.g. for the cylindrical coordinate
system as

:_( _) __( v, (4.1.5-1)
ox r or or

where U is electric potential and x [S/m] is specific electrical conductivity of material. Fixed voltage U
can be prescribed on a part of boundary as a strong boundary condition, electric insulation is a natural
boundary condition (zero normal gradient), and the imperfect insulation characterised by electric
conductivity of an equivalent resistive layer k. [S/m”] can be prescribed as a boundary condition of the
third kind

Kaa—U =k, (U, -U) (4.1.5-2)

where U, is voltage (el. potential) outside the calculated region.
Galerkin method can be applied to the equation (1) with boundary conditions (2) using
identical base and weighting functions Ni(x,y), giving

U, =b, (4.1.5-3)
oN, 0N,
4, =|[r K(aN + N, L) |dQ+ [k NN, dT (4.1.5-4)
5 Ox Ox ar or oo

b =[rkUN,dl . (4.1.5-5)
r

Formulation and solution of the problem in Cartesian coordinate system is the same, only the
multiplication by radius 7 is omitted in integrals (4-5).

This procedure is implemented for elements T3, T6, Q4, Q8, B8, B20 and variable number of
integration points (Gauss integration) can be selected.
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4.1.6. Mass transport with chemical reaction

1570 14
J

The mass transport of up to three different components denoted by N (as Native proteins), D
(denaturated, unfolded proteins) and A (as agglomerates) can be solved using concentrations ¢y, ¢p, ca
of the three mentioned components (kg/m?). It is possible to define any production and sink terms in
transport equations, corresponding for example to an arbitrary chemical reactions or injections of
tracer in a stimulus response experiments. However it is not necessary to interpret the concentrations
cN, Cp, Ca as the concentrations of chemical species in a mixture, but for example as structural
parameters (for modelling of thixotropic liquids), concentration of bubbles or discrete particles in
multiphase flows. In these cases the source and sink terms describe mechanisms of structure decay or
restoration.

The mass balance of the component N can be described by the transport equation written e.g. for
cylindrical coordinate system

0N oy Snyyy Yon _ O p Gony 10 py O
Ot Oox or Ox ox r or or

)+ 0y —Sycy, Sy =8, +4, (4.1.6-1)

together with the boundary condition of the third kind

D, a;—N —ky(c, —cy) (4.1.6-2)
n

and it is obvious that these equations are exactly the same as the transport equations and boundary
conditions for heat transfer (mass transfer coefficient 4y is interactively defined as a function). Also
the solution method is the same, and equations (1) for cn, cp, ca are solved in this order (Femina
calculates in each time step first electric potential U, then the flow field, temperature field and even
then cy followed by cp and finally ca).

A slight difference is in definition of production and sink terms: Production term Oy [kg of A
produced in m® per second] is defined by user, while the sink Sy is the sum of the user defined function
and the rate coefficient Ax corresponding to the chemical reaction of the first order

dc
T;V =—-Ay(T)c, ) (4.1.6-3)

While the sink Snu must be defined as a function with index referred in EGROUP, the rate coefficient
An 1s a material parameter and its corresponding material function represents the Arrhenius term

E
Ay = Ay eXp(—— ). (4.1.6-4)
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4.1.7. Pipeline networks — pressure distribution
Let us assume that the flow of an incompressible liquid in a pipe segment is fully developed
and isothermal. Then the axial pressure profile is linear and only 2-node elements (elements PIPE2D

or PIPE3D) having pressure as a nodal parameter are sufficient.

Element PIPE

The most important characteristics of the pipe element is relationship between the mass
flowrate and the pressure drop which can be expressed in the following way assuming no gravity
effects

m; =@;(p,—p;):(p,—p;) (4.1.7-1)

Mass balancing® in nodal points will be used instead of the weighted residual method: Sum of oriented
mass flowrates 72 in a node without a source (a pump), or a sink (leakage), is to be zero

20,00, =p;D-(p;~p)=0

(4.1.7-2)
The whole network is therefore described by the following system of equations X\
R T N\,
i—ZZJ:,.?)l Pro D m . -
0y D0y || Py |=|my ) NET3)
i=1,3,...

where the right hand side terms 1,71, ,... are non zero only in nodes where a source pumping liquid

into the network exists, or in discharge points. This global matrix of flow coefficients is assembled
from the local element matrices

[%,]= {_(p;y _(pj” } (4.1.7-4)

where flow coefficients ¢ depend upon the viscous properties of fluid, flow regime, channel geometry
(diameter of pipe d and length L;) and local losses:

4
@ = 127;'0 dL , holds for laminar flow of Newtonian liquid Re<2300 (4.1.7-5)
HLy
and
0558\ prd""
: :( : j s holds for 2300<Re<10’ (Blasius). (4.1.7-6)
"L (Pl AP)™ 1

? Mass balancing is quite general, however if density of liquid is constant, the same approach can be applied for volumetric
flowrates and this method has been used in versions FEMINA 3.4 and older.
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The flow coefficients are constant and the whole problem is linear only in the case of Newtonian
liquids and laminar flows. If it is not the case, iterations are necessary and coefficients ¢; must be
repeatedly evaluated from Eq. (6) for pressures from the previous iteration. Decision whether the flow
regime is laminar or turbulent is based upon the value of Re calculated from the hypothesis of laminar
flow

3
Re= 1201
324°L,

(4.1.7-7)

Starting from the version FEMINA 3.3 the element PIPE2D has been improved so that the wall
roughness & as well as the local resistance { (e.g. Borda’s losses) is respected in the turbulent regime.
The Blasius correlation (6) is used only as an initial estimate, followed by iterations based upon the
Churchill’s correlation for pressure drop

Ap:lpuz(,1£+§) (4.1.7-7)
2 d
where A is the friction factor (Churchill 1977),
8 1
A=8(—)"* +——=]"" 4.1.7-8
[(Re) (a+b)3/2] ( )
a=[2.457In 1 b= (M)16 . (4.1.7-9)

(1 s027® Re
Re

d

Parameter C in (7) is the coefficient of local losses specified as an element parameter RCONST — in
this way it is possible to account for additional pressure losses in sudden contraction or expansion of
pipe, influence of elbows or T-pipes.

Using Eq.(7) the flow coefficient can be expressed in terms of pressure drop as

0, (8, A0 = ml |—F——. (4.1.7-10)
88p( +0)

Non-Newtonian liquids

Viscosity of liquid need not be a constant, but can be defined as a function of temperature,
pressure or shear stress as a table (CURDEF) or as a function (FUNDEF). Non-Newtonian liquids are
characterised by dependency of apparent viscosity upon the shear rate or upon the shear stress (TAU).
If such a form of dependency (e.g. FUNDEF 1 tau**a) is specified’, the calculation of flow
coefficients must be quite different. Radial velocity profile is no longer a parabolic but a more
complicated function, and only the radial profile of shear stress remains linear even for an arbitrary
non-Newtonian liquid (for an arbitrary rheological model with the exception of viscoelastic liquids).
Knowing the shear stress at the wall (z,) it is therefore possible to integrate the mass flowrate
according to the Rabinowitsch Mooney Weissenberg equation

* FEMINA identifies the nonnewtonian liquid automatically, therefore it need not be specified explicitly by a switch.
However, it is possible to enforce the RMW integration even in the case, when viscosity function is independent of stress,
i.e. if it is only Newtonian but temperature sensitive liquid. This is accomplished by selection the index of viscosity
funkcion higher than 10.
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8pnl’ 8pnl’ T3
i, =%jﬁm:%j%d7 (4.1.7-10)
iy 0 i 0

for a specified function x(7) - apparent viscosity as a function of shear stress. This integration must be
carried out numerically in each element and in each iteration, because the upper bound of integral, the
wall shear stress 7, is changing with the iterated value of pressure drop:

dAp,
Yooar,

y

r (4.1.7-11)

Let us show how the constitutive equations for the most frequently used models are formulated:
Power law liquid (two parameters, K-coefficient of consistency, n-power law index)

Kl/n

T=Ky" 7)= 4.1.7-12
4 u(7) maX(loflo’Z_)(lfn)/n ( )
Bingham liquid (two parameters, yield stress 1, plastic viscosity p,)
T
T=Ty+ M,V u(z) = ar (4.1.7-13)

max(107,7 —7,)

Herschel Bulkley liquid (three parameters K- consistency, n-power law index, yield stress to)
K 1/n T

max(107"°,z —7,)"" '

Note: The reason why the function max has been used is to avoid overflow if the shear stress is zero (at

axis) or less than the yield stress (within the piston flow region) — in these cases apparent viscosity
should be infinity.

T=17,+Ky" u(r) = (4.1.7-14)

Thixotropic liquids

A specific form on non-Newtonian liquids are liquids exhibiting thixotropic behaviour, which
means that the consistency of liquid depends not only upon the actual deformation (or upon an actual
wall shear stress) but upon the whole history of deformation. This is typical for example for paints
which increase consistency after application when stay at rest, or for food products like a yoghurt or
mayonnaise which gradually decrease consistency when mixed and regenerate their structure at rest.
Thixotropic liquids are usually modelled by previously mentioned power law or Bingham like models
when model parameters, e.g. coefficient of consistency or the yield stress are functions of the so called
structural parameter A; €(0,1) which is a transported property of liquid decreasing towards zero in
regions with high rates of deformation (or with high level of stresses) and returning back to the state of
fully regenerated liquid (As — 1) at rest or at very slow flow regions. Rather general thixotropic model
EHZS (extended Houska, Zitny, Sestak) originated from the model of Cheng (see Sestak 1990) can be
expressed as

a;; +ii-VA, =V-DVA +a(l-1)—bAj" (4.1.7-15)

where the first term on the right hand side represents dispersion of structural parameter (in the same
way as for example dispersion of a component in a mixture), the second term describes regeneration of
structure and the last term the structure decay due to actual rate of deformation. There is no thixotropic
model implemented in FEMINA explicitly, however it is possible to make use the FEMINA’s
capability to solve concentration changes and for example the concentration cy can be interpreted as
the structural parameter As. Parameters of rheological model, for example consistency coefficient, can
be therefore expressed as interactively defined functions of structural parameter c.
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Example: How to implement Cheng’s model of thixotropy using interactively defined functions.

FUNDEF 1,A+B*TAU**P FUNDEF 2,A
FUNDEF 3,(C*CN/max(le-10,TAU)**(1-Q))**(1/Q)

The function 1 and 2 define source and sink of Cheng model (15) where the wall shear stress TAU is
used instead of shear rate (these functions must be specified as parameters in EGROUP as sources and
sink). Parameters of Cheng’s model are user variables A (restoration coefficient), B (decay coefficient)
and P (exponent). The function 3 defines the power law model of viscosity (variable Q is a power law
index) with the consistency coefficient proportional to the structural parameter CN, see Eq.(12). This
function 3 has to be specified as a viscosity function in MPROP and because it depends on the shear
stress TAU the Rabinowitsch method will be automatically applied for solution of flow.

Hydrostatic pressure (buoyancy)

Gravity changes the distribution of pressures and flowrates. These effects must be considered if
we want to study buoyancy and natural circulation loops formed in a non-isothermal field of liquid as
soon as its density depends upon temperature (and it always depends). Straightforward approach
follows from the following force balance, which is a slight modification of the straight pipe
characteristics Eq.(1)

m,=@;[p; —p,; +PL; (g, sina,; + g, cosa;)] (4.1.7-16) y

or more generally for a pipe in the x,y,z space

m; =@, [p,—p;+p(gh, +gh, +g.h)l (4.1.7-17) pi "y
where Ay, hy, h, are projections of Lj; onto coordinate axes x,y,z.
The mass flowrate balance at a general node i can be expressed using (16) as
Sy =Y 0,(pi—p)+ Y. pLw, (g, sina, + g, cosa;) =0. (4.1.7-18)
j J j

The global system of equations for nodal pressures

Z¢li —Qp n, — Z pPL,p, (gy sin,; + g, cosa;)

i=2,3,... P i=2,3,...
— @y Z(ozi || P2 | =10y — ZPL2i¢2i (g,sina, +g, cosay,) (4.1.7-19)

i=13,... i=13,...

can be obtained by assembly of local element matrices (considering element with nodes i and j)

Q5 ~Py | | Pi|_|~PLp; (8, ‘Sinaii +8,cosay) N mu (4.1.7-20)
P Py ] P PL;p; (g, sine; +g, cosa;) My

Note 1: Assembly of the last vector on the right hand side over all elements gives vector of residual
flowrates m2;, which are zero at all inner nodes of network. Therefore this vector is omitted when
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contributions of individual elements are calculated (modelling of wall permeability is an exception, see
later). It should be stressed that at any end point of network one and only one boundary condition must
be prescribed: either pressure as a strong boundary condition, or flowrate which is in fact residual of
the mass flowrates in the respective point.

Note 2: When calculating coefficients ¢y it is necessary to take into account that these coefficients
correspond only to friction or kinetic energy losses (and thus the hydrostatic pressure must be
subtracted from the pressure difference p;-p; , which is used as an argument of the function ;).

Buoyancy can be modelled by prescribing temperature dependent density p(7) in previous
equations, either as an expression (FUNDEF) or a table (CURDEF) with index of function specified in
MPROP. However, there is another option, Boussinesq approximation, operating with a constant
density but with the material parameter S, thermal expansion coefficient, prescribed as a material
parameter. In this case (which is better for example when considering round-off errors during
assembly) the Eq.(16) is replaced by equation

mz] :(Dy[pl _pj +p0ﬁ(T_T0)(gxhx +gyhy +gzhz)] (4'1'7-21)

where py is a constant density corresponding to a constant reference temperature 7,. Use the command
OPTION or the drop-down menu Solution - OPTION for selection of the Boussinesq method.

Permeability of wall

There exist applications, especially at biological systems, where a pipe cannot be considered as
perfectly tight and some leakage of liquid through the pipe wall is possible. Assuming that the leakage
is proportional to the difference between the pressure inside a pipe and the external pressure, the mass
flowrate [kg/s] assigned to the node i of the element with nodes 7,/ can be expressed as

PLOu,

4.1.7-22
o ( )

Am; =(p,—p,)

where Lj is length of element, O-perimeter of pipe, 4, wall thickness, u viscosity of permeating liquid
and g, permeability of wall material (unit of permeability is m?). Parameters O, h, M, are specified in
RCONST, while viscosity x is an MPROP parameter. The leakage flowrate (22) is applied in the right
hand side vector in Eq.(20) describing mass flowrate contributions of element i-j to the balance at
nodes 1 and j.

Local resistances

Pipeline network consists usually of other components like valves, pumps, heat exchangers and
even mixed vessels. All the elements could be also described by two node elements (two pressures as
nodal parameters and flowrate as a single element parameter), however with a different hydraulic
characteristic. Some of these elements can be described in FEMINA as the element PIPE2D with a
user defined hydraulic characteristic @;(Ap,Re,D¢,H) specified as a parameter of EGROUP (zero index
of this function means standard empty pipe). This function can be defined in a standard way as an
expression or as a table with arguments DP (pressure difference with subtracted hydrostatic head), RE
(Reynolds number), DE (characteristic diameter), and HE (element length), TEMP (mean temperature
of element). This function, if specified, multiplies hydraulic characteristic calculated by previously
described methods for straight empty pipe.
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Note: Some permanent characteristics, e.g. of elbows and t-pipes can be included into
coefficient of local losses £ which is much simple (but cannot by a function because € is a RCONST
parameter).

Vessels (element CSTR)

Pressure drop through a vessel is calculated in the same way as the pressure drop in a circular
pipe. The only difference is in the coefficient of local loss  which represents full loss of kinetic
energy, corresponding mean velocity at inlet

Ap =% p(ul + 2, diug) (4.1.7-23)

The element PUMP is designed in a specific way. The flow coefficient ¢ is set to zero (there is
no contribution to the matrix of the algebraic equations system) and the right hand side vector is
defined as the mass flowrate, calculated according to the characteristic of pump

1 = p(A+ BAp + CAp?) (4.1.7-24)
if the pressure height Ap is within the specified range for a given pump, or

i = p(E + FAp) (4.1.7-25)

if the pressure height calculated from the previous iteration exceeds capability of centrifugal pump.
This approach is used for calculation of centrifugal pumps selected from a database (each pump is
characterised by the coefficients 4,B,C,E,F").

In the case that a wrong pump is selected and the pump is not able to deliver sufficient
displacement head, an emergency modification of hydraulic characteristic is used (with an empirical
parameter D)

in= PP (4.1.7-26)
Ap

Positive displacement pumps or pumps with non-standard characteristics are calculated
according to the prescribed function V' (¢, Ap).

Parallel pipes

The element PIPE2D can be extended for modelling of flow in N identical parallel pipes — this
case is identified by parameter in EGROUP. Algorithm is almost the same and follows from the
following equation

my =Ney[p,—p; + p(g.h, +g,h, +g.h,)]. (4.1.7-27)
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What can be misleading: Flowrates, calculated during postprocessing and presented as an element
parameter (Q) are related only to single pipe in a bundle!

FElastic wall of pipe

Flow in an elastic pipe is especially important for modelling flows in arteries and veins. The
simplest case assumes flexible walls of circular pipe, with elongation of diameter directly proportional
to the internal pressure

p=e(d—d,) (4.1.7-28)

where the coefficient e [Pa/m] depends on modulus of elasticity of wall, its thickness and diameter.

An equation relating flowrate, pressure and diameter of elastic pipe can be derived from
continuity equation (assuming incompressible liquid) and balance of forces, acting upon a short
element of a circular pipe with inner diameter d

giving

. 0 ou
=g, a—’; FPPLE PO (4.1.7-29)

with the coefficient of fluidicity ¢ ([m’s], this coefficient represents effects of viscous friction).
Fluidicity can be derived in the same way as in Egs.(5-6), giving ¢, = ¢, L, and therefore

_zpd’

Q= holds for laminar flow of Newtonian liquid Re<2300 (4.1.7-30)
128
and
19/7
@, =0.558*"7 _pmd holds for 2300<Re<10° (Blasius). (4.1.7-31)
(p al )3/7 ﬂ1/7
Ox

Parameters in Eq.(29) have the following meaning: m = puA is mass flowrate (kg/s in a given place x
and time 7), g is the x-component of gravity (acceleration m/s®), and the last inertial term represents
acceleration of liquid (u is mean velocity [m/s]).

Continuity equation must include also the time variable volume of element of a circular pipe

8_71'1 - _p_ﬂd@_p (4.1.7-32)
ox 2e Ot o
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Combining the continuity equation (32) with the momentum balance (29) we can eliminate the mass
flowrate and arrive to the differential equation for distribution of pressure

prd Op 6 0 ou
_pmacp O < _9 o , 4.1.7-33
T ax( Lo ax (pp.g,) . (pp, 61‘) ( )

Few comments: The second term corresponds to the buoyancy — in the case that both density, gravity
and flow resistance are constant, the term vanishes. Last term is caused by inertial forces and it will be
neglected in the following analysis.

Let us consider dimensionless form of pressure equation without the buoyancy term.
Introducing dimensionless pressure, normalised by the pressure drop corresponding to a steady viscous

flow in a pipe with characteristic length L and
2
* * * t *
P A LS =Mool (4.1.7-34)
Ap  32Lpuu, L L u,

we arrive to simplyfied form of (33)

* *

2% 2
L L (4.1.7-35)
Ox ot Ox

_
ot

*

with dimensionless numbers

3 5
__de po_pde (4.1.7-36)
64 L, 204817 L7

The last inertial term will be negligible if B/A <<'1

2
B_pPu _h0315Re? (4.1.7-37)
4 32Lu L

therefore if Reynolds number and d/L simplex are sufficiently small.
Let us suppose that this assumption is satisfied. Then we can derive an integral form of
Eq.(33), by using weighted residual method with arbitrary weight functions W(x)

prd Op 0
@ _ Y - dc=0. 4.1.7-38
i [2 Py 6x( L x) 6x(,0<0Lgx)] x ( )

The unpleasant second derivative is eliminated by per partes integration

d &, oW op oW
I(W”2 8’; goa—a—p+a—pgoLgx)dx=0 (4.1.7-39)

Further on we apply Galerkin method W;(x)=N;(x), p(tx)=p;N;(x) and thus we obtain the following
system of ordinary differential equations describing a time evolution of pressure

dp].

b, (4.1.7-40)

where
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M, =[NN, P (4.1.7-41)

o 2e

ON. ON
K. =[p 20 gy 4.1.7-42
v E[(pL ox Ox ( )

and
b, = —j% 0, g .dx. (4.1.7-43)
5 Ox
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4.1.8. Pipeline networks — heat transfer fundamentals

Let us consider the network of pipes where pressures and flowrates are known. Knowing
thermal characteristics of liquid, external temperature and having information on thermal resistances at
wall (for example thickness of thermal boundary layer) it is possible to calculate axial temperature
profiles in pipes using three different methods: method of weighted residuals, method of enthalpy
balances and method of characteristics which will be described separately for the simplest element
PIPE2D. All the three methods are based upon the Fourier Kirchhoff equation written in the following
form

or _or, o oT
A —+tu—)=—(4 —)+ kO[T, -T)+ A(Q-ST
pcp(at u ax) ax( pe,a, ax) (T, -T)+ A(Q—-ST)
0= K[(%)2 +E;1+0, (4.1.8-1)
with boundary condition
pe,a, Z—T =a(T,-T)|, (4.1.8-2)
n

where 7(¢,x) is a mean calorimetric temperature in a cross section of pipe, a, is axial dispersion, & is
heat transfer coefficient to surrounding, O is perimeter, 4 cross section, and 7. is ambient temperature.
The term Q represents a volumetric heat source [W/m’] consisting of predefined contribution of
electric field (x is specific electrical conductivity [S/m], AU is voltage difference along the channel
axis, while Ey is transversal component of electric field intensity) and a user defined source Q.
describing for example reaction heat. Sink term (S7) proportional to temperature is also defined by
user as a function S(7,z,cxs,...). Unit of all terms in Eq.(1) is W/m i.e. power related to the unit length of

pipe.

Note: Boundary condition (2) of the third kind is not typical for pipelines where convective heat
transfer dominates. However, the Eq.(1) can be applied also for description of one dimensional
temperature profile in a slab (in a layer or in a truss) where heat is transferred by conduction and the
boundary condition (2) at surface is frequently applied.

Special attention should be paid to the coefficient of axial dispersion a. which is not identical
with the thermal diffusivity a. If the flow is laminar, if the tube is thermally insulated and if the
thermal diffusivity a is sufficiently high

a> 0.08% (4.1.8-3)

the analogy with diffusion of a tracer holds and the Taylor Aris theory can be applied (see Thyn 2000)
for theoretical prediction of dispersion coefficient as a function of tube diameter d, thermal diffusivity
and mean velocity as

L_lzdz
a, = a+
192a

) (4.1.8-4)
5 9

while at turbulent regime the dispersion coefficients can be expressed as o function of Re

3-10’ 1.35
Re?! + Re"12 )-

a, =ud( (4.1.8-5)
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Problem exists when the thermal diffusion is rather small and the flow is laminar. In this case neither
Eq.(4) nor the formula (5) can be used and only as an emergency solution the expression

—2
a, =a+2" (4.1.8-6)
T

could be tried, where characteristic time T is a more or less empirical parameter.

Note: The formula (6) stems from requirement that the rate of dispersion of a narrow pulse is the same
as the mean velocity u 7 = /7, r .

Thermal resistances

Heat transfer coefficient £ in Eq.(1) represents overall heat transfer from the liquid inside a pipe
(characterized by the bulk temperature 7" - nodal parameter) to the surrounding (outer temperature T, is
specified as a RCONST parameter). The heat transfer through the pipe surface (or only through the
part of the pipe surface, see parameter PERIMeter in RCONST) must overcome outer thermal
resistance and thermal resistance of wall (given by ALPHA parameter in RCONST), then thermal
resistance of deposited fouling layer (calculated according to selected model of fouling) and finally
internal thermal resistance in liquid, characterised by heat transfer coefficient a which is related to the
thermal boundary layer thickness d as

==, 4.1.8-7
a== ( )

The thickness d can be calculated from correlation for Nusselt number in turbulent regime
Nu =0.023Re"® Pr’, (4.1.8-8)

because arguments (Re and Pr) are independent of axial distance, and therefore & can be calculated
only from dimensions and flowrate in a given element. This is not so simple in laminar regime,
because in this case thermal boundary layer is not disturbed by turbulent vortices and is only slowly
developing along the pipe. The following figure shows, how the thickness 6 can be estimated based
upon assumption of linear velocity profile near the wall (u=/3, where 7" is velocity gradient and y is
the distance from wall) and thermal penetration depth theory, giving

5 :W% (4.1.8-9)

where the coefficient ¢ represents correction which is to be evaluated from experiments.

— .
~(Q—————— - QP - -
Y} e N
/ do| O =Amaf u=ly
¢ AX )
x=ut=I"ot >

The assumptions used in derivation of Eq.(9) are consistent with the Leveque’s solution for circular
tube and thermally developing region (for a short pipes)
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— 72
ud
ax

Nu,, =1.618YGz =1.618;

(4.1.8-10)

According to Eq.(9) we can express the thickness 0 in terms of thickness Oy in the preceding element
(preceding in the sense of flow direction):

aAx

5 =8, +¢ (4.1.8-11)

which is implemented in FEMINA in the form
DELTA=AMIN1((D/3.66)**3, DELTA0**3+1.845*PI* A*H/GAMMA )**0.3333333. (4.1.8-12)

The first term represent a limit — maximum thickness of thermal boundary layer, corresponding to
limiting Nusselt number for circular tube and the case with constant wall temperature (Nu,=3.66).

The symbol I is usually used for the so called consistency variable which is identical with the
velocity gradient at wall for parabolic velocity profile, I'=8u/d, but in FEMINA the I" is evaluated as
the actual gradient even for a general radial velocity profile, corresponding to variable apparent
viscosity

Tu (4.1.8-13)

ILlW (Tw b Y—VW )
where Ty, 1s wall shear stress calculated from axial pressure gradient

T, :id_p (4.1.8-14)
4 dx

It should be noted that the Eq.(14) holds for circular tube and narrow planar slit exactly (no matter
what is the form of radial velocity profile) as soon as the parameter d is calculated as the equivalent
hydraulic diameter. Apparent viscosity at wall generally depends upon unknown wall temperature 7y,
and this temperature cannot be calculated exactly. Wall temperature estimate is based upon rather
crude assumption of radial temperature profile in a
circular tube, characterised by known temperatures T,
(ambient), Ty, (mean calorimetric temperature — this is

calculated nodal temperature) and unknown temperature ~  _p—.—.—._._ T
Ty and T, (temperature in core, outside the thermal :a/
boundary layer). Starting from the definition of mean ———| u=ly
calorimetric temperature and substituting boundary Tw
condition for temperature in the form E Ty
Bi(TW—Te)zT"_*TW : Bi:keR, 5 =2 (4.1.8-15) Te

o A R

where k. is ‘outer’ heat transfer coefficient (specified in RCONST) and R is radius of tube, the final
equation for wall temperature can be derived

in +(8 A+C - B)BiT,

T, = . . (4.1.8-16)
(1+ Bis™ YA+ (1+ Bi)C — BiB

The coefficients A,B,C depend upon relative thickness of boundary layer
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A ; y (4.1.8-17)
_ _S™\3 _ _S™\S

Bl (135) 1 (155) (4.1.8-18)
_ _ *\2 _ _ *\4

c-! (125) ! (145) . (4.1.8-19)

Remark: Previous equations have been derived only for circular tube assuming parabolic velocity
profile, therefore the calculated 7y, is only an approximation.

Fouling in PIPE2D elements

Fouling is a nonstationary phenomenon because thickness of deposits on the tube wall is a
function of time even for constant flowrate and inlet temperatures. Models have form of ordinary
differential equations describing rate of fouling - time change of thermal resistance.

A very simple model suitable for oils and oil products has been suggested by Ebert and Panchal
(1995) as an ordinary differential equation for thermal resistance [m?.K/W], or thickness of layer A

dr a

E
E=Wexp(—ﬁ)—ﬂ, h=2,r, (4.1.8-20)
where 0=8.39 [m’K/J], E=68 [kJ/mol], y=4.03-10"" [Pa.m>K/J] are constants (determined
experimentally for oils) and 1 is wall shear stress.

Milk fouling has been studied by many authors, the key contributions are the work of Fryer at
all and Lalande at all in France, who investigated the effect of B-lactoglobulin denaturation. De Jong et
al (1992) applied the reaction kinetics of B-lactoglobulin in plate heat exchangers. Paterson and Fryer
(1988) proved, that the fouling of milk cannot be considered as a surface reaction and that it is
necessary to model the chemical reaction and mass transfer in the bulk region too. The native protein,
denaturated protein and aggregated protein kinetics can be simplified in 1D form

ocy  Ocy O ocy E,

Ny N 2 (D Ny k — 4.1.8-21
or u o 8x( N o )~k exp( RT)CN ( )
oc oc 0 oc E E

a—f + Ma—;) = a(DeD a—;) + kN eXp(—R—]]V_')CN — kD eXp(—R—;)cé (418-22)
oc, oc, 0 oc, Ey. >

Ay A - 2 (D Ay ko exp(— =2 4.1.8-23
2 4o ax( oA ax) » €Xp( RT)CD ( )

The rate of deposition is related to the concentration of aggregated proteins and can be expressed again
as a differential equation for the thermal resistance 7 or equivalent thickness / of fouling layers
dr dh
—=fc,, —=A.0c,. 4.1.8-24
7 pe, 7 ey ( )

Crystallisation fouling analysed by Brahmin et al, can be described by a similar model as Ebert
Panchal
dr 2 2
E:kN(cN —Cpe) —acCyU (4.1.8-25)
where the first term describes deposit and the second term removal of layer formed from salt having

concentration cy in the main stream flowing with the mean velocity u.
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4.1.9. Pipeline networks — heat transfer in pipes, CSTR and heat exchangers

In this chapter three fundamental finite methods for solution of previously formulated problem
(heat transfer in pipe) will be presented.

Weighted residual method for element PIPE2D

This is a standard procedure: The Fourier Kirchhoff Eq.(1) in previous chapter is multiplied by
a weighting function W(x) and integrated over the whole region (interval a,b), giving weak formulation

b
j [Wpc A(a—T+ﬁa—T)+pc Aaeé—Wa—T—WkO(T —T)—WA(Q — ST)ldx = [WAa(T, - T)]
, P ot ox P Ox Ox

x=a,b

(4.1.9-1)

Temperature is approximated by linear base functions Nj(x) and asymmetric weighting functions W;(x)
are derived according to Zienkiewicz as

ahut ﬂ

T=NT, W. =N, + 4.1.9-2
Y ' " 2lu| dx ( )
with the optimal value of coefficient of asymmetry o
¢ —cothPe—,  pe=lultP (4.1.9-3)
v Pe 2a

e

Substituting approximation (2) into Eq.(1) we arrive to the system of ordinary differential equations

T =b (4.1.9-4)

where the matrix of heat capacities M, matrix of heat transfer 4 and the vector of heat sources are

b
M, = j Ape W,N dx (4.1.9-5)
; j aNi 8Nj
=l pcpA(Wu La,— L D) WN (KO + AS)d +[AWN (4.1.9-6)
b, _jW(kOT +AQ)dx +[AaTW,1._,, (4.1.9-7)

The system of ordinary differential equations (4) is solved by Euler’s method (6=0 explicit, 6=1
implicit)
T.-T°

; JA—tf+ A6, +(1-0)T1=b,, (4.1.9-8)

it means that in each time step new temperatures are solution of the following system of linear
algebraic equations

(M, +AtOA)T, =[M,; — At(1—0) A, 1T + Atb, . (4.1.9-9)

FEM3AILDOC last update 25.2.2005 Page 54 of 81



Method of characteristics for PIPE2D

With the aim to reduce numerical diffusion error the method of characteristics, decomposing a
time step to a convective and a diffusive phase, has been developed. The convective phase solves the
hyperbolic differential equation (integration along characteristics)

* *

oI 7% _y (4.1.9-10)
Ot ox

(any function 7(x-uf) is solution), while the parabolic differential equation, without convective terms

Apc 8i=3(A,oc a, ai)+k0(Te ~T,)+ A(Q - ST,) (4.1.9-11)
Poot ox P ox

is solved in the second phase, by the previously described Galerkin method, it means, that
temperatures are calculated according to Eq.(9) where

b
M, :jApc N,N dx (4.1.9-12)
b N
5 =[lee, "+ N,N,(kO+ AS)ldx +[AaN,N 1., (4.1.9-13)
. .
b, = j N,(kOT, + AQ)dx +[AaT,N,]_,, (4.1.9-14)

Remark:
This decomposition is not quite accurate, which can be demonstrated on a simplified problem

or , or _ T wyith the initial condition 7°. The solution is searched in the form 7=T,+AT, where the
ot Ox o’

convective part satisfies initial condition 7° and hyperbolic equation 7. +u %% _, while the diffusive
ot Ox

part should be solution of 97 AT, _ &°T 'however the convective term , 2A7, is neglected.

ot Ox ox? ox

Method of enthalpy balances for PIPE2D

This is in fact control volume method, however even if balances are formulated at an element
level, equations are written for nodes, stating that the sum of oriented enthalpy flows must be zero at
any nodal point (if it is not a point source or a sink of heat of course). Let us assume an element PIPE,
with mass flowrate oriented from node 1 to node 2.

IO:m,Wzn'/lcp #@2

< L >

We shall suppose that the mass flowrate and also the specific heat capacity is constant and that
the temperature profile is linear. Then the enthalpy flow to the node 1 is negative
T, - T

H, =-WT, — A4, (4.1.9-15)
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The enthalpy flow into the node 2 can be expressed as the sum of enthalpy flow from the node 1 plus
the internal heat source plus the heat transferred from surrounding, minus heat sink and accumulation

- - AL
H, =WT, +A/le¥+ALQ+kLO(Te —¥)—ALSTI -;Tz _ ;Cp d(T1d+T2)
t

(4.1.9-16)

where W is heat capacity of stream, 4 is cross section and L length of pipe, O is perimeter (therefore
LO is heat transfer surface), Q is volumetric heat source, and § is volumetric sink term.
These two contributions of element to enthalpy flows can be expressed in matrix form

T,
. . d1, A% A2, . .
ALpe,  ALpe, | dt |4 L L AN |
- o) Ly Ak KO ALS  Ad, KLO+ALS \T,)”\H, - ALQ - kLOT,
dt L 2 L 2
(4.1.9-17)
and similar expression holds for the opposite flow direction (W<0),
dT A2, kLO+ALS AA, kLO+ ALS _
_ALpe,  ALpe, | b | = . 5 Wn\ (B -4L0-kLoT,
2 2 lar, |T AL AL - '
0 o )z ‘ w2 L H,
dt L L
(4.1.9-18)

Assembly of these contributions gives again the system of ordinary differential equations (4).

Pipelines with CSTR and PUMP

Elements CSTR and PUMP are calculated in a similar way as PIPE2D — they are also elements
with two nodes and the three previously described methods are implemented with minor differences.
When using weighted residual method, the element PUMP and CSTR had been initially implemented
as a pipe, the only differences were in the definition of heat transfer surface. However, this is not a
realistic description of mixed tanks and thus beginning from the version FEMINA 3.4 the base
functions has been modified so that the weighted residual method would be compatible with the
enthalpy balancing approach.

The enthalpy balancing assumes, that temperature inside an element is uniform and equal to the outlet
temperature, which corresponds to the assumption that liquid inside a vessel or inside a pump is well
mixed. The equations of enthalpy balances are therefore simplified:

. . dT.
H, =-WT,, H, =WT, +VQ+kLO(Te—T2)—VST2—Vpcp7t2 lop | 33
1 .
O 0 ) a | (W 0 T _ H, for W>0 (4.1.9-19)
0 —Vpc, ) dl, | \ w -kOL-VS)\T,) \H,-VO-kLOT,
dt
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dr,

and  (~Vpe, O\ g | (-KOL-VS —WYT)_(H,-VQ-KkLOT, for W<0 (4.1.9-20)
0 0)dr, 0 wo\T, H,
dt
Heat exchangers HEXC

Heat exchangers are modelled by HEXC elements of different kinds, determined by the
EGROUP parameter TYPE.

The simplest Heat Exchanger (TYPE=0) is formed from two elements PIPE2D which must be
defined separately and represent heat exchangers with parallel flows, in cocurrent and countercurrent
flow orientation, e.g. a simple one pass double pipe or one pass plate heat exchanger. This approach
has the advantage, that the element HEXC need not calculate the flow (pressure drop) and thermal
resistances (fouling, heat transfer coefficients) in both streams, because this is accomplished by two
elements PIPE2D

1 U Y
ZIET) S ) W L) s 2 (4 prpe2p [
L A A AP HEx Akst AL
PIPE2D | T pPIPE2D| JT‘ (7> L__{PIPE2D
1 u 1
__________ oo

Equations describing temperature profiles along the heat exchanger in both streams are described by
nearly the same equations as for temperature in pipe, the only difference is in the source/sink terms,
describing heat exchange between the streams:

or" _or? o’r®

A pic i ( ot ):Alplcplaelax—2+k101(Te—T“))+Q“)+kS(T(2)—T(”) (4.1.9-21)
aT(2) _ aT(Z) 82T(2)

A, pyc 5 ( ot ):Azpchzaezax—2+k202(Te—T(z))+Q(2)+kS(T(1)—T(2)) (4.1.9-22)

Weighted residual method for HEXC (TYPE=0)

is applied in the same way as for single pipe

dr®
()] M) QY] 1) )y — (M
Mt AT+ B (T ~T/) = b) (4.1.9-23)
dr®
(2) J 2)(2) (2) (2) My _ 12
M=t APT 4 BT ~T(") = b) (4.1.9-24)
where
dN, hit
B = [(N,+2D 0N ksdx z0 = A (4.1.9-25)
5 dx 2u, |

It should be noted, that matrices M, A and b are the same as integrals derived for single pipe, where the
heat transfer coefficient kx concerns only the heat transfer between pipe and surrounding (for a well
insulated heat exchanger this coefficient is zero). Essential for the heat exchanger are only coefficients
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B, where £ is heat transfer coefficient summarising thermal resistance of wall, thermal resistances of
fouling and thermal boundary layers in channels 1 and 2. S in Eq. (25) is heat transfer area related to
the unit length of heat exchanger (therefore the unit of S is meter). Not considering the asymmetric
part of weighting function Z®, the coefficients B would be independent of characteristics of individual
pipes (e.g. independent on size, flowrates and so on).

Thus the element HEXC calculates only the following contribution to the matrix of the system of
algebraic equation

Bl(}) Blg) - Bl(ll) - Bl(;)
BY BY -BY -BY
-B -B3 B BY
-By -By By BY

(4.1.9-26)

Enthalpy balance method for HEXC (TYPE=0.1.2....)

Heat exchangers HEXC TYPE=0 (formed by two elements PIP2D) can be calculated by the
enthalpy balance method in the same way as by using weighted residuals, i.e. calculating only the
contribution of heating power transferred between the both stream. However, the enthalpy balance
method is applied also for more complex heat exchangers if TYPE>O0. In this case the HEXC is a stand
alone element and calculates both hydraulic and thermal characteristics of multipass plate and
shell&tube heat exchangers. Nodes of these 4-nodes elements should be numbered as shown in the
following figure (1,2 denote first stream, i.g. in a shell, while nodes 3,4 second stream, e.g. tube
bundle, pair 1,3 are nodes at one end of heat exchanger, e.g. front head, while 2,4 are nodes at the
opposite end, e.g. rear head):

] 7'(2)u2 ]

PIPERD T3
LA A EEX kst A4

Qs (T —~
1 ul I

W, W, are thermal capacities of streams (W;=p;c,1A;u;) and positive values correspond to the
orientation of flow in the previous figure. A general heat exchanger is characterised by the element
matrix A (4 x 4), which enables to calculate a contribution of the element to the nodal enthalpy flows
(positive value denotes heat flow towards a node)

All A12 A13 A14 ]11 Hl
Ay Ay Ay Ay ) T, _ H 2 (4.1.9-27)
A31 A32 A33 A34 T3 H3
A41 A42 A43 A44 T4 H4
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Matrix of enthalpy flows A4 depends upon orientation of flow in both streams and there are four
possible arrangements (entries of the matrix A are thermal capacities W, W, and heat exchanger duty
W=Q/AT calculated according to Eq. (32)):

-W, 0 0 0 AT - difference of inlet temperatures
w,-w 0 w 0
Wi>0, W>0 A= 0 0 W 0 AT =T -T, (4.1.9-28)
"
w O w,-w 0
-W 0 O 0
w-w 0 W 0
Wi>0, W,<0 A= W 0 0 R AT =T, -T, (4.1.9-29)
-W, -
0 0 O w,
o -w-w w 0
0 W, 0 0
W;<0, W>0 A= 0 0 W 0 AT =T, -T, (4.1.9-30)
)
0 w w,-w 0
0O -W.-w 0 W
o W, 0 0
Wi<0, W,<0 A= 0 W 0 W AT =T, -T, (4.1.9-31)
-W, -
o o0 0 W,

Heating power transferred between streams Q (heat exchanger duty) is calculated from the temperature
difference of incoming streams A7 and from the effectiveness of the heat exchanger ¢; related to the
first stream (tube side stream in case of shell&tube heat exchangers)

L _IRO-T ) m@ - 0
1 AT | W, | AT | W, | AT
O =W, | AT =WAT , Where w=W e, . (4.1.9-32)

Note: For basic heat exchangers TYPE=0 the contributions corresponding to the terms W; and W, have
been described in elements PIPE2D, therefore the HEXC elements needs to define only the entries W
in the preceding matrices A.

Effectiveness ¢; of heat exchanger depends upon heat transfer area, overall heat transfer
coefficient and upon a specific flow arrangement (e.g. crossflow), and can be calculated from
correlation as a function of NTU (Number of Transfer Units) and relative heat capacities of streams R.

Co-current flow arrangement
_1—exp[-NTU,(1+R,)]
1+ R,

(4.1.9-33)

1

counter-current
_ 1—exp[-NTU,(1-R))]
1- R, exp[-NTU,(1-R))]

(4.1.9-34)

1
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Number of transfer units is related to the heat capacity of stream 1 (therefore we do not distinguish
weak and strong streams)
kS

NTU, = — (4.1.9-35)
A
and R, is absolute value of ratio of heat capacities
R =" (4.1.9-36)
WZ

A disadvantage of enthalpy balances method in comparison with weighted residuals is the fact,
that there are no natural boundary conditions and therefore ending nodes must be treated differently (it
does not hold that sum of enthalpy flows is zero in these nodes). Therefore the outlet nodes where the
temperature cannot be described as a strong boundary condition must be labelled (in Femina status of
temperature must be set to a value greater than 20 in these nodes) and matrix of enthalpy flows must
be modified (this modification consists in adding heat capacity to the diagonal entry of A)

W, 0 0 0
w,-w -W, W 0
W1>0, W,>0 A= (4.1.9-37)
0 o  -w, 0
w 0 W,-W -W,
W, 0 0 0
w,-w -W, W 0
W1>0, W,<0 A= (4.1.9-38)
w 0 W, —W,-Ww
0 0 0 W,
W, -wW,-w W 0
0 W, 0 0
W,<0, W,>0 A= (4.1.9-39)
0 0 -w, 0
0 W W, -W —W,
W, -, -W 0 w
0 W, 0 0
W,1<0, W,<0 A= (4.1.9-40)
0 W OW, —W,-W
0 0 0 w,

Programming of a specific heat exchanger reduces to the calculation of pressure losses, i.e. calculation
of flow coefficients ¢;j(Ap) in both streams and to calculation of effectiveness €, which represents
calculation of overall heat transfer coefficient (including eventually fouling at both sides of heat
transfer surface).

Chevron plate heat exchanger

In view of the fact that in FEMINA it is easy to combine heat exchangers in series or in parallel it
seems sufficient to analyse only a heat exchanger with one pass and m parallel channels in one stream.
These m-channels are formed by 2m+1 plates having width w and height L. Distance of plates is D./2,
where D, is a hydraulic diameter of channel. We shall consider chevron type plates schematically
shown in the following figure:
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It follows from the preceding figure that the overall heat transfer area between stream 1 and 2 is
S=Splate (2m-1) (4.1.9-41)

and that the heat transfer area of one plate is approximately

Spae=+2WL . (4.1.9-42)

Cross section of a channel is A4

kanal

D : ,
= —Ew and corresponding mean velocity # and Re number

/ D
uzz—V Re:u

, (4.1.9-43)
mD,w u

Pressure drop along the plate of the length L can be expressed as a function of Fanning’s friction factor
L 8/Lp 2
Ap=2f—pu’ =—""V 4.1.9-44
therefore
me3/2

V. = 0, Ap.., Y, = —F——
i i ij /—Sfl.,pApu
i ij

The Fanning‘s factor f'has been derived by Martin (1996) as a function of chevron angle 0

(4.1.9-45)

| cosé +1—cos€ (4.1.9-46)
\/7 \/0.045 tan0+0.09sin6'+—f0 V381,
cosd
Functions f) and f; depend upon flow regime, i.e. upon Reynolds number
Re<2000
16 149
=— , =—+0.9625
Sy Re 5 Re
Re>2000
1 9.75
= =— 4.1.9-47
Jo 1.56InRe—-3 / Re*** ( )
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Heat transfer coefficient can be expressed using this Fanning factor as suggested by Martin (1996)

Nu = “f = 0.205Pr"3 (£L) 0 (£ Re?sin 20)" . (4.1.9-48)

w
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4.1.10. Pipeline networks — mass transport

Mass transfer in pipes is described by a similar transport equation as for heat transfer

A7 %0y = O (4D, ) sk Oey, ) + A~ Syey) (4.1.10-1)
ot Oox Oox ox
where Sy=AyM)+Sy,

and these equations hold for three concentrations ¢y, ¢p, ca , only coefficients differ. Dye is dispersion
coefficient, calculated from the diffusion coefficient Dy in exactly the same way as the thermal
dispersion a. was calculated from the thermal diffusivity a. The coefficient ky is mass transfer
coefficient (m/s) corresponding to permeation of the component cy through the tube wall into
surrounding, with concentration cne given as a RCONST parameter. Oy is a production term defined
by user (default zero), while Sy describes sink of component N, and consist of predefined chemical
reaction of the first order with the frequency factor Ay defined as material parameter (possibly
including the Arrhenius term) and of user defined part Sy, characterising for example other reactions).
Problem formulation is completed by the boundary condition

oc
DNea—;v=aN(cNe ) (4.1.10-2)

at endpoints of pipes.
Due to similarity of differential equations also the solution methods are the same. Weighted
residual methods leads to the system of equations for element PIPE2D (and also PUMP,CSTR)

(M, + At0A; ey, =M ; — Ar(1—-6) 4, ]ey; + Atb, (4.1.10-3)
where
b
My = [AWN d (4.1.10-4)
¢ dN, ON. ON,
Ay = [[AVg—L+ Dy, —~L—L)+ WN, (kO + AS)ldx +[Aa, N 1,y (4.1.10-5)
b ox ox  Ox J jli=j=a,
b
b, = [W,(kyOcy, + AQ, )dx +[Aaye, W], : (4.1.10-6)

a

Component balance leads to the equations written in matrix form for element 1-2. For positive velocity

dey, _ AD,, AD,,
0 — —Au ——= —
AL AL | 4t |4 L L En | _ My, (7)
—7 —7 dCN2 AI,7+ADN6 _kNL0+ALSN _ADNe _kNLO+ALSN Cya mNz_ALQN _kNLOCNe
2 L 2
and similar expression holds for negative velocity (#<0),
dc AD kyLO+ ALS AD kyLO+ ALS
AL AL N1 _ Ne N N Ne N N o4 .
3 ol AL 2 L 2 j[m AL, -kNLOCNej ®)
0 0 dcy, ADy, Al — AD,, Cra Ty,
dt L
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Component balance of elements PUMP and CSTR follows the same assumptions as the enthalpy
balance, i.e. uniformity of concentration inside the apparatus

dey,
(0 0\ g | (4¥ 0 j(cmj:( riy, J for u>0 (4.1.10-9)
0 —V) decy, Au  —kyOL-VS, \cy, lity, —VQ, —kyLOc,,
dt
and
de y,
(—V 0] dt +[—kNOL—VSN _Au][CNIJZ(mM_VQN_kNLOCNgJ for u<o0 . (4.1.10-10)
0 0) dcy, 0 Au ) cy, 1ty
dt
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4.2. RTD processing and finite difference equation models

Matrix of observation point is used for comparison of transient FEM solution with experimental
data, further on for lumped parameter models based upon assembly of ideally mixed tanks and plug
flow units and finally for regression analysis of calculated or measured data. The first column of
matrix of observation point is time, corresponding to data in the following columns (2,3,...,10).
Therefore the matrix of observation points describes up to 9 functions of time represented by table of
values with a common time base (there are 1024 rows — observation points by default).

There is a pair of parameters TYPE and INDEX associated to each column, these parameters are used for
identification of columns
= TYPE=0 Empty (undefined) column)
= TYPE=1 Time (the first column by default)
= TYPE=2 Time course of nodal parameters (INDEX is the index of node)
= TYPE=3 Experimental data (usually imported by ROM command)
= TYPE=4 Stimulus function (INDEX identifies stimulus in the case of multiple inputs)
=  TYPE=5 Response calculated by RTD model (INDEX identifies output of system with multiple outlets)
= TYPE=6  Regression model prediction
= TYPE=7 Standard deviation ©
= TYPE=8 Impulse response E(t)
= TYPE=9 Correlation function Ryy(t)

The following paragraphs are focused upon description of methods used for processing of time
courses (evaluation, corrections and generation response).

.00E+00 .20E+00 .10E+00 .10E4+00 .OOE+00 .ODE+00 .OOE+00 .DOE+00 .DOE+0DO .
10E+00 .29E+00 .19E+00 .19E+00 .OOE+00 .ODE+00 .OOE+00 .DOE+00 .DOE+0DO .
.20E+00 .36E+00 .44E+00 .31E+00 .0ODE+D0 .ODE+00 .0OE+00 .DOE+00 .DOE+0DO .
.30E+00 .42E+00 .32E+00 .39E+00 .DOE+D0 .ODE+00 .DOE+00 .DOE+0D0 .DOE+DO .
A0E+00 .47E+00 .55E+00 .45E+00 .DOE+D0 .ODE+00 .DOE+00 .DOE+0D0 .DOE+DO .
.50E+00 .50E+00 .53E+00 .50E+00 .DOE+DD .ODE+00 .DOE+D0 .DOE+00 .DOE+DO .
.60E+00 .53E+00 .56E+00 .51E+00 .DOE+D0 .ODE+00 .DOE+00 .DOE+00 .DOE+0DO .
.70E+00 .55E+00 .42E+00 .55E+00 .DOE+00 .0DE+00 .DOE+00 .DOE+0D0 .DOE+DO .
.B0E+00 .56E+00 .G4E+00 .55E+00 .DOE+D0 .ODE+00 .0OE+00 .DOE+0D0 .DOE+DO .
.90E+00 .57E+00 .42E+00 .56E+00 .DOE+D0 .ODE+00 .0OE+00 .DOE+00 .DOE+DO .
J10E+01 57E+00 .B7E+00 .54E+00 .DOE+00 .ODE+00 .DOE+00 .DOE+0D0 .DOE+DO .
A1E+01 57E+00 .42E+00 .53E+00 .DOE+00 .0DE+00 .0OE+00 .DOE+0D0 .DOE+DO .
12E+01 .56E+00 L0E+00 .51E+00 .0OE+D0 .ODE+00 .0OE+00 .DOE+00 .DOE+0DO .
13E+01 .55E+00 .30E+00 .50E+00 .OOE+00 .ODE+00 .0OE+00 .DOE+00 .DOE+DO .
.14E+01 .55E+00 .61E+00 .47E+00 .0OE+00 .ODE+00 .0OE+00 .DOE+00 .DOE+0DO .
15E+01 .53E+00 .44E+00 .48E+00 .0OE+00 .ODE+00 .0OE+00 .DOE+00 .DOE+0DO .
.A6E+01 .52E+00 .52E+00 .49E+00 .DOE+D0 .ODE+00 .DOE+D0 .DOE+0D0 .DOE+DO .
A7E+01 .51E+00 .43E+00 .49E+00 .DOE+D0 .ODE+00 .DOE+00 .DOE+0D0 .DOE+DO .
.18E+01 .50E+00 .GOE+00 .49E+00 .DOE+D0 .ODE+00 .DOE+D0 .DOE+0D0 .DOE+DO .
.19E+01 .48E+00 .43E+00 .43E+00 .DOE+D0 .ODE+00 .DOE+00 .DOE+00 .DOE+DO .

observation matrix 20-rows
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4.2.1. Local smoothing

The operation SMOOTH comprises simple Method for local smoothing: median filtration and
linear or quadratic regression splines. The coefficients of splines are not evaluated by a solution of
system of equations, but recursively starting from the first data point. The idea of smoothing is simple:
i+1 point is a value of linear or quadratic polynomial passing through the preceding point i and having
the least sum of squares of deviations from N-preceding points and N-points behind the point i+1
(smoothing is suppressed for N=0).

ot ¥r 1o

____________________________________________

1 Qadratic spline

Linear spline

_______________________________

_______________________________________

_______________________

————————————————————————————————————————————————————————————————————

______________________________________________________________________

o time® 10
In the following the symbol ¢ is used for smoothed and y for original (noised) values:
Linear spline
c=y +a(t-t), (4.2.1-1)

has coefficients a; following from the requirement of minimum sum of squares
i+2

Sl? = ZD’/ -y, —a,(t; —ti)]2 (4.2.1-2)
j=i-1
3 L — t,’
z (yj —-C p —i )(t‘,‘ —1;)
a, = J=i — i (4.2.1-3)
Z (tj - )2
J=i-1
Quadratic spline
c=y, +a,(t—t)+b(t—t) (4.2.1-4)
has the coefficients a; b; which are derived in a similar way like the coefficients of linear splines
i+N
si= Dy, —vi—a,t;—t)=bt; —1t)] (4.2.1-5)
Jj=i-N+l
i+N ) i+N 3 i+N :} - m/\ rrrrrrrrrrrrrrr
Z(tj _ti) Z(tj _ti) Z(tj _ti)(y_j _Ci) 1 rrrrrrrr
j=i—-N+1 j=i—-N+l1 a; j=i—-N+l E V \ ; A N
JiN s 1) =/ 2 (4.2.1-6) | \\ e
Z(tj_ti)3 Z(tj_ti)4 ' Z(tj_ti) (yj_ci) ) | e
N+ J=i-N+1 J=i=N+1 IR o e
// \\L ,,,,,,,,,,,,,,,
The median filtration replaces y; by median of values 1 R
yi—Nsyi—N+19"-ayi—layi:yi+19'~'7yi+N' : ] 2 3 ' ;“me
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4.2.2. Data import with quadratic interpolation

Let us assume that the data, prepared in a file in form of pairs (¢; y;), do not match the time base
in MOP (sampled times do not conform with the first column, time, in the matrix of observation
points). Standard approach based upon linear interpolation is substituted in FEMINA by quadratic
local regression approximation. Quadratic polynomial passes through the pair of points enclosing the
interpolated value of time ¢, and has the least sum of squares of deviations in two neighbouring points
(left and right). The quadratic polynomials are therefore defined by tetrad of points labelled #, ...,

c=y +alt—t)+bt-1)’ (4.2.2-1)
where coefficients a,b follows from interpolating restriction
Y, =y +alt, =) +bt, —1,)’ (4.2.2-2)
and from requirement of least squares
s?= Yy, —»—alt, =) =b(t, —1,)*T" . (4.2.2-3)
j=0,3

Solution of these equations gives

t—t )
z [yj - = _yl)tj —; 10, _tl)(t‘j _tl)_(tj —-4)7]
b= - (4.2.2-4)
A [(tz_11)(tj_t1)_(tj_t1)2]2
a= ytz—:;yl —b(t, 1)) (4.2.2-5)

4.2.3. Tail approximation

There are three options, three different functions, which can be used for tail approximation
identified by non-linear regression analysis

Mixed vessel c(t) =y, +aexp(—bt) (4.2.3-1)
Two mixed vessels  c¢(¢) =y, +texp(a—bt) (4.2.3-2)
Convective model ct)y=y, +alt’ (4.2.3-3)
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Parameter identification proceeds as follows: First the background level y., is estimated according to
minimum of processed response, the regression model is linearised and parameters a,b are evaluated
by linear regression. This procedure is repeated several times for improved value of background y.
(bisection method).

4.2.4. Background raise correction

The case when the limiting value of measured response y, for infinitely long time is greater
than the initial value at time zero can be explained by the fact that the detector signal registers not only
the radiation from the outlet stream but also the activity of tracer accumulated in a storage tank behind
the apparatus outlet:

Vm(?) measured value

V() = y()+ k{ Y(w)du (4.2.4-1)

_» y(t) at outlet _> v

The constant k is fraction of radiation of the tracer in the storage tank recorded by detector and
depends upon shielding of the detector. This constant is determined by the amount of tracer in infinite
time, when all tracer is transported to the tank.

= 2720 (4.2.4-2)
I y(u)du
0
The integral equation (1) can be solved by the Laplace transform
t
YO =y, O k[ y, e du . (4.2.4-3)
0

In view of the fact that the constant & depends upon the unknown signal y(#) iterative solution is
necessary, i.e. new approximation of y(¢) is calculated from Eq. (3) using the value £ from previous
iteration and its value is updated according to Eq. (2). These relationships assume that the initial value
(and also a final) value of signal y(¢) is zero (zero concentration of tracer at inlet), however due to
presence of a natural background radiation the value y,,(0) is greater than zero and this value is to be
subtracted from the measure signal (this operation is performed automatically).

4.2.5. Moment calculations

Moments of responses are calculated numerically, based upon linear interpolation of tabulated
functions

® 1N71
M, = IY(t)dt = EZ(J}HI +yi)tin —t;) (4.2.5-1)
0 i=1
2 1N—1
M, = [(o)ds = & 2t =27) =y (6F 1,8, = 215)] (4.2.5-2)
0 i=1
K N g g oy -yt = (-1
M. = t2 tdt: ) i+1 i i+l irli+l i TiNtitl i 4.2.5-3
) j YOdi =3ty S = (4.2.5-3)
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4.2.6. Fast Fourier transform, convolution, deconvolution and correlations

Noise filtration, calculation of convolution, deconvolution and cross correlation of two
functions are performed by using fast Fourier transform of N-sampled values (FFT),

k=0

© N-1
E()= j E) ™™ dt, =D Exe™N, n=01..N-1. (4.2.6-1,2)
Backward Fourier transform (inverse FFT) differs only by the sign in exponent

© N-1
EW)=[Epe*df . E.= %Z BN k=01 N-1. (4.2.6-3,4)
—0 n=0

Convolution of functions x and y (C(¢) = .[x(t —7)y(7)d7 ) reduces to the product of Fourier images, it

means to the product of Fourier coefficients

T Uﬁ x(t- z‘)y(r)dTJ e dt = T (T x(t- T)ez’”ﬁt'”y(z‘)ez”’f’drjdt =Xy (. (4.2.6-5)

-00 \ _-00 -00 \ _-00

and correlation of the two functions x and y (R, (¢) = I x(7)y(r +t)d7) is product of complex

conjugated x and y:

R.0= I[I X(T)y(T+ r)dr]e”"ﬁ a- | (f x(7)& 7 y(r+ z)erfff“+vdr]dz -

-00 =00 \ _-00

(4.2.6-6)

-00

- (I x(r)e-“ffdrj[f y(r)erfdrj ~XNTH=F D F0.
Note: Preceding relationships written for continuous FT hold also for discrete DFT.

Deconvolution, i.e. evaluation of impulse response E(#) by the solution of Volterra integral
equation of the first kind will be described in more details

y(t) = TE(I —-7)x(r)dr. (4.2.6-7)

The coefficients FFT of sought impulse response are calculated from the FFT coefficients of stimulus
function x(7) and response () by using regularisation procedure

FoIEAWGD'E Wz( P j

XX +W@i-1)" NAt

where W is a weight of regularisation (user specified value of optimal regularisation w is independent
of the period length NA? and is typically of the order 107). It is obvious that for W=0 it is a classical
method of deconvolution, calculating FT of impulse response simply as a ratio of FT response y and
stimulus function x. W>0 can be specified only if there are some reasons to believe that a specific
analytical model should be a good representation of impulse response: 7, is Fourier coefficient of this

(4.2.6-8)

analytical model. In the program FEMINA the impulse response of a serie of M-ideal mixers is used as
a regularisation model

~ 1

— . 4.2.6-9
i 22—, ( )
(I=—""")
MNAt

where ¢ is the mean time of impulse response and NA? is overall time — it is period of Fourier
transform.
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4.2.7. Solution of ordinary differential equations system

For the solution of ordinary differential equations of the first order (initial problem)

dc,
E = fi(t,¢1,Ca,esChy)

=~ Laseen) %:f(z,é) 4.2.7-1)

= fut,ci,cy,escyy)

can be used either a classical Euler‘s method
¢t + Af) = E(1) + Aif (1,6(1)) (4.2.7-2)
or Runge Kutta method of the 4-th order

LAY

k
t+A) =c(t)+-L+ 4.2.7-3
ctA=cl)++—rt ot ( )

where
k, = Atf (1,6(1)) (4.2.7-4,5,6,7)
Fo = 7+ 220+

AV k,
Al‘]p(l“i‘?,C(l‘)ﬁ‘?)

Atf (¢ + AL, E(1) + 153)_

ky

k,

It is possible to select a constant time step At of integration when using Runge Kutta method
(this integration time step should not be identified with the time step in the matrix of observation
points because only each m-th integration step is stored in this matrix). However, it is also possible to
use variable time step dynamically adjusting so that required accuracy € will be achieved. The
accuracy is estimated in the following way: each integration step is performed once with the full length
At and than again with two smaller steps A#/2 — its difference is a measure of approximation error and
according to comparison with prescribed error the time step is either increased or decreased. Amount
of necessary operations is little bit greater, nevertheless the fact that there exist two results obtained
with different time steps can be exploited by Aitken extrapolation method for accuracy improvement.

The following relationships are used

MEZEYE Rl UL PP Y
&

Estimated relative error in one step is & =ma ,E =

max .
J | Va2 |

If £>1, required accuracy has not been achieved and integration step is reduced according to the
expression
0.9At
4/8*
In the opposite case (a*<1) and if it has not been necessary to perform step reduction in the actual time

step, the integration step is increased (maximum is 4 times)
0.9A¢

Ve

The extrapolation refining of results follows from the fact, the Runge Kutta method is of the 4™ order
which means, that it holds approximately

At (4.2.7-9)

At <

(4.2.7-10)
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v, = y+kAtt (4.2.7-11)
Va2 = y+k(At/2)4 .

Because the values ya; and yay2 are known, it is possible to calculate the unknown coefficient & and
therefore also the ,.,true* value y

1
Yi=Yinan +E(yj,At/2 _yj,At)' (4.2.7-12)
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4.3. Linear and nonlinear regression analysis

Linear polynomial regression is based upon procedures described in Press (1986)
y=a,+ax+.+ay,,x"

Models for nonlinear analysis (the list in not complete, only 8 initially implemented models are
presented) are solve by standard Marquardt Levenberg method, see Press (1986)

EXPONENTIAL DOUBLE EXPON. GAUSS FUNCTION
y=a,+a,e ™ y=a,+a,e " +ae ™" Ry
oy 5 y=a,+tae ™
e 9D dy
oa, da, —=1
oa,
ay . —ayx 5)/ —a,x
a_ =e — = ™ 6_)/ ,(M)Z
a, Oa, - e “
a
aa_y =—a,xe " P _ o s ? .
a3 aa3 ﬂ — 2(12 X _2a3 e a,
ay —a,x aa3 a,
—— =-a,xe _
Oa, 2 Ay

7 1 112E401 3 4 o
ility Q= .929E+00 s CHISQ= .1083E+02 Probability Q= .994E+ S ability Q= .100E+01

RATIONAL FUNCTION LOGISTICS SERIE
y= a ta,x y= L_“ y=ax“ e
1+a,x l+a,e™® W al ap
L = BT
y = oy oy _ 1 Oa,
! oy Oa, l+a,e™ oy o —an
~ ——=-ax’e
o __x y ae " da,
Oa, l+a,x T —a3x 32
2 3 5a2 (1+aze ) a_y: alx 3*16_‘12)6 lnx

ability 0= .100E+01
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AXIAL DISPERSION 1. AXIAL DISPERSION II.
al -a, (x—a3)2 a -a, (x—a3)2
y=—fe ° y=—re *
e @ ||
a_y _ Le_az (X*j3) a_y B Le_az (JC-:s)Z
da, x Oa, x+/x
ay _ al (x _ (13)2 e_a2 (x—:s) ay _ al (x _ a3 )2 e_aZ (xf)t:s)
oa, xx da, x*/x
oy _ 2a,a,(x—a;) -« (x_f) oy 2aa,(x-a,) az(x_;l})z
Oa, xvx oa, x*/x

[NONLINEAR REGRESSION A1%expl{A3-X)™2/X)PX".5
3 -parameters: 3 -parameters:

J27E+01 J170E+01 .645E+00
30 data points CHISQ= .2415E+01 Probability Q= .100E+01

0% ¥ 10

.998E+00 .100E+01 .998E+00
30 data points CHISQ= .2557E+00 Probability Q= .100E+01

20 ¥ 10

The following models with two independent variables are available

Linear polynomial y=a,+a,x; +a,x,
Bilinear polynomial y=a, +a,x; +a;x, +a,xx,
Quadratic polynomial Y =a, +ayx, +a,x, +a,x,x, +ax; +a.x,
Exponential model y=a,+(a, +a,x, +a,x,)exp(asx, +agx,)
Power law model y=a,x"’x;y, y=a,+a,x" x5

a a
Rational power law y=a, +a, 0

a

6 47
I+ asx°x;
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4.4. Optimisation (operation OPTIMA and SOMA)

The basic method used for optimisation of a general mathematical model OPTIMA is in
principle the same as the method used for nonlinear regression — Marquardt Levenberg. The method is
based upon linearisation of optimised model f{x;,pi,...,pm)=fi, Where x; are independent variables of the
i-th observation point and py,...,pm are optimised parameters of model. The least squares criterion is
used for optimisation

P =2 =), (4.4-1)

o, —2Z(y,- f) " =0 (4.4-2)
I /N /. ]

,Z(yi fio ;apk Apk)@pj w, = 0, (4.4 3)

where Ap, = p, — p,, 1s the sought increment of k-th parameter in current iteration step. Therefore we
arrive to the system of linear algebraic equations for the vector of increments

> C.Ap, =B, (4.4-4)
k
where
of, of, of;
L=y ——L B. =) ——(y,— fix)W, . 4.4-5
Jk ZI: 8p] apk w; Jj Zl: 8p] (y fO)W ( )

In the case, that the model is linear with respect to calculated parameters, the system of equations (4) is
linear and only one iteration is sufficient. However, even if some parameters are non-linear iterations
are necessary: first the values of linear parameters are calculated from reduced system (4) for fixed
values of nonlinear parameters. Event than the full system of equations for linear and nonlinear
parameters is solved, with modified matrix of the system (4), where a positive value A is added to all
diagonal entries of the matrix. Before adding the parameter A the whole system of equations is scaled,
which represents matrix transformation giving equivalent system of equations with matrix having ones
on diagonal (this scaling is optional but recommended):

2 Cubp; =B; (4.4-6)
k
* C,k * * B/ *
C, =——= C,=1+1, B, =—=, Ap,=A4p,\Cy (4.4-7)

Jk [~ ~ ; >
ij Ckk ij

Gauss Jordan reduction is used for solution of (6) and calculated vector of increments is unscaled

Ap, =P (4.4-8)
and added to the vector of optimised parameters from the previous iteration.

The value of parameter A is dynamically adjusted in each iteration: if the result is improved, it
means if the sum of weighted squares of differences decreased, the value A is several times decreased
(for zero A, it is for system (4) without modification, the method reduces to the classical Gauss
method), while in the opposite case the parameter A is increased (thus the diagonal dominance of the
matrix is increased, which means that the algorithm reduces to the gradient method if the scaling has
been suppressed).

OPTIMA sometimes fails — it usually depends upon quality of the initial estimate, however
even if it is close to the target convergency cannot be ensured, see the following figure
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OPTIMA

Target (minimum z)

Beside this deterministic Marquardt Levenberg method also the stochastic method SOMA
(Zelinka 2002) can be selected (usually for rough estimate of optimal parameters only). The method
SOMA (Self Organising Migration Algorithm) need not calculate model derivatives, and therefore is
much more simpler, robust but also significantly slower. This is so called memetic algorithm,
modelling movement of several specimen in a hyperspace (under the term specimen we have in mind a
solution of the optimised mathematical model). Principle is trivial:
= First several specimen NSPEC is generated by using pseudorandom number generator. All
specimen must be within the specified range of model parameters.

= The best specimen, called LEADER, is selected.

= Jterations, in SOMA terminology called migration laps, begins. In each lap each of NSPEC
specimen is moving towards LEADER in small steps of the length STEP (the parameter STEP is
relative length of step with respect to the initial distance between specimen and leader), number of
steps is MASS (MASS is specified control parameter, like STEP and NSPEC). In the space of
parameter the trajectories of specimen are lines which aiming toward leader. Not exactly, the
direction specimen-leader is perturbed intentionally by using random number generator. The
measure of perturbation is specified by parameter PRT: if PRT=1 no disturbance is applied and the
smaller (but still positive)is PRT, the greater is the deviation of direction toward the leader (this is
realised in fact so that some randomly fixed parameters are fixed, and the smaller is PRT, the more
parameters is fixed). Migration lap ends by transfer of all specimen to their best position and by
election of new LEADER.

SOMA

Exarmple: 4 specimen

Target

o

rew leader

old leader
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4.5. Structural analysis
4.5.1. Trusses (large deformation using Monte Carlo, command TRUSS)

This example is more or less only a fun. System of trusses loaded by nodal forces is not solved
by using equations describing nodal displacements, rather total energy is calculated for randomly
selected configurations of nodal points displacements and the configuration exhibiting the least energy
is selected (solution is not invoked by the command SOLVE, but using the command TRUSS). This
approach is extremely slow, however it avoids complicated solution of nonlinear equations describing
large displacements.

Total potential energy is the sum of internal energy of deformation (e) and potential energy of
external forces (n).

VVtotal = %Z.[Eegezdl _Z(Fxnuxn + Fynuyn) =

[\/(XEZ +ux22 _xel _uxel)2 +(y32 +uy62 _yel _Myel)2 _\/('xez _xel)2 +(y32 _yel)2 ]2

\/(‘x62 _‘xel)2 +(y€2 _yel)z

1
_EzEe

e
- Z(quxn + Fynuyn)
n

E-Young’s modulus
(4.5_1) A-cross section

4.5.2. Trusses (large deformation, incremental method, command SOLVE)

The same element TRUSS2D can be solved in a standard way (command SOLVE), it means as
a solution of system of equations for nodal displacements. Element stiffness matrix is expressed in the
following way, following from the previous equation (4.5-1) for total energy of a truss element

AE, AE  —AE,  —AE,
AE,  AE, —AE, -AE,
~AE, —AE,  AE, AE,
~AE, —-AE, AE, AE,

[K]=E4

(4.5-2)
where A,,E,... are not constants, but functions of nodal displacements from previous iteration:
1 AxAu, + AyAu 1 AxAu, + AyAu
Ax :E(2Ax+Aux— L2 AX), Ay ZEQAy—l—Auy— L2 Ay)
E - Ax2+Aux . E, - Ayz-i-Auy 2
JAx+ A, ) +(Ay + Au,) JAY+Au, ) +(Ay +Au,) (45.3)

and
Ax=x, =x, Ay =y, =y, Au, =u,—u,, Au, =u,-u,.
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4.5.3. Beams, pipelines (PIPE2D, BEAM2D)

Let us assume two dimensional beams, for example a pipeline. Stiffness matrix of beam having

two nodes with nodal parameters ux uy @, can be expressed in the form

% 0 0 —% 0 0 Uy ®,
0 12EJ 6EJ 0 B 12EJ 6EJ v\
r L r L >
0 6EJ 4E] 0 6EJ 2EJ Uy
2 - 2
K = L L L L (4.5.3-1)
lokalni _ % 0 0 % 0 0
12EJ 6EJ 12EJ 6EJ
0 =) 2 0 3 T2
L L L L
6EJ 2EJ 6EJ 4EJ]
0 2 0 )
L L L L L |

where 4 is cross section area of beam with length L and inertial moment J with respect to the axis z.
For a tube with outer diameter D, , inner diameter D; (wall thickness 2=(D,-D;)/2) the moment J can
be expressed as

J = 6”—4(1); - DY, (4.5.3-2)
while for rectangular cross section b x /4 holds
3
J = % (4.5.3-3)
12

Right hand side vector represents loads (axial force F,, transversal force F; and bending
moment M) — besides explicitly specified nodal forces, continuous loads corresponding to thermal
dilatation and volumetric forces ¢ [N/m], acting normal to the beam axis (for example dead weight,
snow loading), and in the case that the element is a pipe (PIPE2D), also the axial force, caused by the

contraction of pipe due to internal overpressure p:
pDA |
oa(l, - T))AE — y——
( 1 e ) ILI 2h
_ak
2

Fooo - 0 (4.5.3-4)

lokdIni p

DA
~a(T, -T)AE + n*=2—
(2 e) lu 2h

_ab
2
0

In Eq.(4) the a is a coefficient of thermal dilatation of wall material, 7. is a reference mounting
temperature, and 7, 75 are nodal temperatures (we assume, that the wall temperature is the same as the
temperature of fluid).

Stiffness matrix (1) corresponds to the beam, having axis aligned with the axis x of the global
coordinate system (Kjokami 1S stiffness matrix in a local coordinate system). For a beam inclined by the
angle ¢ with respect to the axis x, it is necessary to transform the matrix Ky, by multiplying with the
rotation matrix Q from left and right, and similar transformation (rotation) is to be applied also for the
vector of loads F:
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c S 0 0 00
-S C 0 0 0 O
0= 0 0 1 00 0, C=cosp, S=sing
O o0 0 C S 0
O 0 0 -5 C 0
0 0 0 0 0 1]

(4.5.3-5)
[Foan 1 =[O Fyonimi1s |07 1K i 1O = [K gopins ] (4.5.3-6)

In view of the fact that the rotation matrix Q is orthogonal, Q' O=I, it is possible to evaluate
internal forces (axial force, transversal force and bending moment) from computed displacements in
global coordinate system and from the stiffness matrix in the local coordinate system from the
following expression

[Florimi 1 = [Kzokalni][Q][quabalni] . (4.5.3-7)
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4.5.4. Rotationally symmetric shells (SHELLAX)

Rotationally symmetric shell elements are very important for calculation of secondary stresses
in vessels and pipes. Finite element representing a thin conical ring is based upon Vykutil‘s algorithm,
see Schneider 1990. The element has 6 degrees of freedom (two displacements and rotation in a node)

A
r=y

Results of FE computations are displacements uy, u; and rotation of shell £ in nodes. These
values are used in postprocessing for calculation of internal forces, unit forces acting at the meridian
direction N, [N/m], unit forces in the circumferential direction Ng [N/m] (positive values correspond to
tensile forces) and unit moments M, [N] a Mg [N], whose positive values correspond to the opening of
shell (tensile stresses at the inner surface of the shell, see figure). Further on the unit transversal force
O [N/m] and therefore the corresponding shear stresses is calculated.

_+_
il cosa+% u”] (4.5.4-1)

Eh Eh u,-u " sing + 1 u,,
2R

Na :1—2(8(1 +lugﬂ): 1—,[12[

Eh Eh U, —u U, —u U, +u
N =——(g,+ue )= 2 cosa +—2—"Lsing)+—2—"1] (4.5.4-2
a 1—[[,[2( B lua) l_luz[lu( L ) 2R ] ( )
3 3 _
Ma = Lz(xa +/uKﬂ) = Eh 3 [ﬂz ﬂl +ﬂSinaM] (454‘3)
12(1— u?) 20— L 2R
3 3 _
, :Lz(,(ﬂ +uK,) = En —[u 5= b +sinaM] (4.5.4-4)
12(1— u?) R0-H L 2R
0= SEh (a2 "W G g M2 TR cosa+—ﬁ2 +ﬂ1] (4.5.4-5)
120+ u)" L 2
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4.5.5. Plane stress/strain, rotationally symmetric bodies (elements PLANE?2)

Plane stress
The only nonzero componets of stress are in the x-y plane, two normal and one shear stress..

Deformation in the normal direction to the plane x-y is allowed, however the corresponding normal
stress s, 1S zero, and therefore is zero also the contribution of the transversal deformation to the
deformation energy. Corresponding stiffness matrix of an element is expressed by integrals

T

B] (k] [&.] -
K]=[[[BY [P} Blds = ﬂ wia] (8] -Jis=|[k.] (K] (4.55-1)

where D is the matrix of elastic constants and the submatrices Kj; with dimension 2 x 2 correspond to
the combination of nodes i and j

N

-

2 o

@Vi

Y
95}
Il

[« F[[[2] 1013,

O@]
¥

AN, N, [|* ol

3 ooT”

(4.5.5-2)

»[ 2o

ayvow, 1— 41 N, N, a’Nﬂv Lo u N, N,
2 y 3 a2 a a |
1-p N, N,  ON, N, lﬂOWiéNJ

ayo’k 2 & d H & 2 & &

Plena strain
The case, when the component of deformation e,, is zero differs only in a different matrix of

elastic constants

[ |
1—u
p]-—L£4=m | # 0 (4.5.5-3)
(1+ (A -2u) | 1- u ' o
R R—
L 21— p) |
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