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ABSTRACT

    This paper presents a review and comparison of
approximate methods for rapid estimates of the friction
factor for stabilized flow of purely viscous fluids in non-
circular ducts. Results of the approximate procedures, for
the particular case of a power-law fluid, are compared with
data obtained by numerical integration. For cross-sectional
geometries formed by singly connected regions without
sharp corners, all available approximate procedures yield
results with relative deviations from the numerical data not
exceeding about 5%. However, for cross sections formed
by doubly connected regions such as for flow in the gap
between a square duct with an inner centered cylindrical
core, or for an eccentric annulus, deviations  may exceed
much more than 15% and neither of the existing methods
can be recommended.
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INTRODUCTION

    For laminar flow of Newtonian fluids in ducts,
theoretical as well as numerical results for the friction
factor are most frequently expressed in term of the
Poiseuille dimensionless group

Po f= Re , (1)
where the Fanning friction factor f  and Reynolds number
are defined as,
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where D A Oe = 4  is the equivalent diameter, u  denotes
the volumetric mean velocity, ∆p  stands for the pressure
difference on the duct length L  and ρ , µ  denote the fluid
density and dynamic viscosity.
For Newtonian fluids, the f Re  product in Eq. (1) depends
upon the particular form of the cross-sectional geometry
only, e.g. it’s value is 16 for a circular tube. For power-law
fluids for which the rheological model τ γ= k n&  holds, a
generalized Reynolds number Re B  is defined,
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for which,
( )f f nB BRe Re ,= −cross sectional  geometry . (5)

APPROXIMATE METHODS FOR CALCULATING THE
FRICTION FACTOR

    Kozicki, Chou and Tiu, [1] appear to be the first who
proposed to estimate the friction factor from the equation 
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where a , and b  are geometrical parameters which are
determined from the corresponding solution for Newtonian
flow in the same cross-sectional geometry, see. e.g. [1] or
[2].
Miller, [3], proposed in 1972 the following approximation,
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Since, according to Kozicki et al, [1],
a b f+ = Re 16 , (8)

Miller’s method employs only one parameter, more or less
easily obtainable from the corresponding Newtonian
solution.
In 1995, analyzing values of Kozicki’s geometrical
parameters, Delplace and Leuliet [4], deduced the
following correlation between the parameters,
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Substituting from Eq. (9) into Kozicki’s Eq. (6) yields
Delplace and Leuliet’s approximation,
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which again employs only one parameter, namely that in
Eq. (8).
Recently, Liu and Masliyah [5], developed a three-shape-
factor method embodied in the relation
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similar to that developed by Kozicki et al, [1]. Since it is
not difficult to show that the shape factors k1  and k2  are
related to the a  and b  parameters by

( )k a b1 2= + , k b
a2 1= + ,

(12,13)

and taking in account that Liu and Masliyah adopted
Deplace and Leuliet’s assumption in Eq. (9), Eq. (11) is
transformed into,
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which is very similar to Delplace and Leuliet’s result in
Eq. (10). In order to apply all the methods outlined so far, a
Newtonian flow solution in the particular cross-sectional
geometry is sufficient. A certain drawback of the method



in Eq. (14) originates from the fact that the determination
of the k3  shape-factor requires a numerical solution for n
different from unity.

A COMPARISON OF THE APPROXIMATE METHODS

Cross section formed by a singly connected region
    In order to check the accuracy of all the four
approximate methods for a cross-sectional geometry
formed by a singly connected region, a symmetrical L-
profile was used, see Figure. 1. Results obtained by a finite
difference numerical technique, [6], were taken as
reference “exact” values. For the particular case of
B A = 0 5. , excellent agreement was found with values of
f BRe  reported by Ta-Jo Liu, [7], from n =1  down to
n = 0 5. .
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Figure 1. A comparison of the approximate methods for a
symmetrical L-profile.

In Figure 2. the relative deviation ω ,
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is plotted against the B A  simplex. As expected, Liu and
Masliyah’s procedure yield the best results due to the fact
that the k2  and k3  shape-factors were extracted from a
numerical solution [7]. Kozicki et al. and Delplace and
Leuliet’s methods exhibit similar results, the latter being
more advantageous  due to the fact that it employs a single
shape-factor only. Generally, all four methods predict
correctly a minimum of f BRe  values near B A & .= 0 75 ,
relative deviation of all methods remains below 5%.
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Figure 2. Relative error of approximate methods for a
symmetrical L-profile.

Cross section formed by a multiply connected region

    As an example of  a cross section formed by a doubly
connected region, the eccentric annulus geometry in Figure
3 was choosen. The shape factors a  and b  were
determined from the Newtonian solution published by
Piercy, Hooper and Winny [8]. Geometry of the cross
section is defined by the gap curvature κ = =2 2r R d D

and by the dimensionless eccentricity e e R r* ( )= − .
Results of the approximate analyses were compared with
numerical data reported by Guckes in 1975, [9], for
n = 0 5. . From Figure 3. and 4. it is clear that, for e* .< 0 5
the relative error of all three methods remains below 5%,
Kozicki’s method resulting perhaps in slightly more
accurate values. Since k3  values could not be obtained
from the graphically presented data in reference [9], in
view of the conclusions in the original work [5], the
obvious choice is to set k3 1&= . If this is done, Liu and
Masliyah’s predictions coincides with Deplace’s method,
[4]. However, for values of e* .> 0 5 , accuracy of all the
approximations decreases rapidly and, with e*

approaching unity (i.e. for the inner core or tube touching
the outer tube) makes all the approximate methods useless.
A similar phenomenon has been reported for the doubly
connected cross section between a circular core enclosed in
a square duct, [10].
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Figure 3. A comparison of approximate methods for an
eccentric annulus.
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Figure 4. Relative error of approximate methods for an
eccentric annulus.

CONCLUDING REMARKS

    For cross sections formed by singly connected regions
and values of f Re 16  differing not much from unity, all
four approximate procedures yield useful results with
errors usually below 5%, mostly in the whole range of
0 1< <n . From the point of view of computational effort,
Deplace and Leuliet’s method may be recommended
giving results with acceptable accuracy and just a single
shape factor in Eq. (8). For cross sections formed by
multiply connected regions, especially those exhibiting
very sharp corners (such as in the gap of the annular
geometry for e* →1 ), neither of the methods available so
far can be recommended and further work is needed.
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