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Heating of a solid cylinder immersed in an insulated bath.
Thermal diffusivity and heat capacity experimental evaluation.

Žitný R., CTU FME Department of Process Engineering, March 2001

1. Introduction

The problem was initiated by the following E-mail from Carter Technologies Co.:

Dear Sirs,
We are seeking a method for measurement of the thermal conductivity of a sand and cement
grout used to grout  heat transfer pipes into the earth.  The application is for ground loop
heat pumps.  Presently we find that different labs give different readings. One uses a 1/8 inch
diameter heated thermo couple probe inserted into a 4 inch by 8 inch cylinder of the grout.
Another uses some kind of rectangular sample and a reference material with a Shotherm
QTM-D2 instrument.  Our application is over a temperature range of 40 degrees F to 100
degrees F. Could a accurate test be devised based on cooling a 3000 gram 2.0 specific density
cylinder sample to 40 degrees F and then immersing it in an  insulated water bath having
1000 cc of water at 100 degree F. and measuring the temperature at 1 minute intervals for 10
minutes?  Would this work and do you have any instruments to do this.  How would you
calculate it?

Results of suggested experiments (time courses of water temperature) can be used for
evaluation of heat capacity and thermal diffusivity of material if the following simplified
description of experiment is accepted: Cylinder (radius R, height H, thermal diffusivity a) of a
uniform temperature T0 at initial time t=0 is submerged into liquid (mass Mw , specific heat
capacity cw) having different initial temperature Tw0. It is supposed that the faces of cylinder
are insulated and the heat is exchanged only through the cylindrical surface S=2πRH. It is also
assumed that the liquid is so intensively mixed, that it has a uniform temperature Tw, the same
as the surface of cylinder.

2. Solution based upon linear temperature profile within a thin penetration depth

Let us assume that the temperature is changing linearly from Tw to T0 within a thin layer of
thickness δ(t) at the wall of cylinder (or any other form of body, having surface S). Taking the
enthalpy of solid at initial temperature T0 as a reference (zero), the total enthalpy of body at a
time t is
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This enthalpy is changing according to the heat balance
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The enthalpy increase of body must be the same as the enthalpy decrease of water bath
dH M c dTw w w= − (3)

At the same time the enthalpy change is given by Fourier law as
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Three unknowns, penetration depth δ(t), enthalpy H(t) and Tw(t) are determined uniquely by
three equations (2,3,4). Enthalpy H can be eliminated by equating (2-4) and (3-4)



carpaper.doc 2

S c d
dt

T T
dT
dt

S
T Tp

w
w wρ δ

δ λ
δ2 0

0( ( ) )− + =
−

(5)

− =
−

δ λ
dT
dt

S
T T
M c

w w

w w

0 . (6)

Equations (5) and (6) can be integrated, giving relationship between penetration depth and
time, unfortunately in the inverse form t=f(δ)
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Only for a very short time the penetration depth can be expressed explicitly as
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Substituting penetration depth Eq. (8) into Eq.(6), a short time approximation of the liquid
temperature at time t can be derived in the form
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are relative heat capacity of liquid, dimensionless time and surface of cylinder, respectively.
Results obtained using this "short time approximation" will be compared with exact solution
in the next paragraph.

3. Solution using infinite series

After an infinitely long time the both temperatures of liquid and cylinder achieve
equilibrium temperature
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and this equilibrium temperature will be used in the definition of dimensionless temperature
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The temperature T* of cylinder is initially one in the whole cylinder except at its surface r=1
(where T*

w=-1/(2M)), and tends to zero at equilibrium. 
Temperature profile in a cylinder is described by dimensionless form of Fourier equation
∂
∂τ

∂
∂

∂
∂

T
r r

r
T
r

* *

( ),=
1

(15)

where dimensionless radius r is related to the radius of cylinder, and dimensionless time is
given by Eq.(11).

Temperature of liquid is governed by an ordinary differential equation, expressing enthalpy
balance of liquid
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Dimensionless coefficient M is the ratio of heat capacities of liquid and cylinder, see Eq.(10).
The solution T* can be expressed as an infinite series
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where the boundary condition at axis (symmetry) is automatically satisfied for any χi (because
J0'(0)=0). Boundary condition at surface of cylinder (r=1), Eq.(16), is fulfilled only for
eigenvalues χi  which are roots of equation

J M Ji i i1 0 0( ) ( )χ χ χ+ = (18)

Examples of results, eigenvalues χi calculated numerically for M=0.5, 1, and 2 are presented in
Tab.1. 

Tab.1 Roots of Eq.(30) for M=0.5,1, and 2
χ M=0.5 M=1 M=2
0 0 0 0
1 2.9496 2.7346 2.5888
2 5.8411 5.6914 5.6083
3 8.8727 8.7666 8.7109
4 11.9561 11.8753 11.8337
5 15.0624 14.9974 14.9643
6 18.1803 18.1261 18.0987

The eigenvalues need not be solved numerically, because a simple approximation can be
derived from asymptotic properties of Bessel functions for large arguments and using a mild
empirical correction for low values of index i,
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Comparison of exact values and approximation (19) is shown in Fig.1

Fig.1 Eigenvalues χ1 and χ2 as a function of M, according to exact solution of Eq.(18) and
approximation Eq.(19), which predicts slightly higher values within the range M∈(0.01 – 1).

Relative error of (19)
within the range of M
from 0.001 to 100.

i %
1 0.37
2 0.10
3 0.045
4 0.023
5 0.014
6 0.012
7 0.011
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The coefficients Ai of series (17) should satisfy initial condition
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for r=1 (at surface).
Problem is in the fact, that the system of functions (20) is not orthogonal. However, we can

proceed in a standard way, i.e. multiplying the series (20) by rJ0 and integrating 
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For i≠j the integrals of product of Bessel functions are, see Jenson (1973) 
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For i=j it is necessary to use a different formula (be aware of the fact, that the expression (22)
is of the form 0/0 and for example the l'Hopital rule must be used)
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Integral on the left side of Eq.(21) follows immediately from Eq.(22) for χi=0,
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Substituting Eqs.(22-24) in Eq.(21) and rearranging terms we obtain
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Making use of initial condition for temperature at surface, Eq.(21), Eq.(25) can be simplified 
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and thus the coefficient Aj can be evaluated without necessity to solve a system of equations,
giving the final solution for the dimensionless temperature field in a cylinder 
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This exact solution can be compared with the short time approximation (9), rearranged to
the form
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Examples of results are presented in Figs.2 and 3
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Fig.2 Dimensionless temperature of wall as a function of at/R2 for M=1. Curves represent the
short time solution Eq.(28), and the series (27) for 13 terms or just 1 term.

Fig.3 Time courses of 2MT* for M=0.125, 0.25, 0.5,1, 2 and 4. Curves represent the short time
solution Eq.(28), and series (27) were calculated with 20 terms using approximation Eq.(19).

Comparison of methods results in the conclusion that the "short time approximation" is
suitable for dimensionless time τ<0.03 at M=0.5. This value is not so low, because e.g. for
a=10-7 m2 /s and for radius 0.05 m the corresponding time is 750 s (more than 10 minutes).
Reducing series (28) only to the first term of expansion is acceptable for τ>0.1.
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4. Application, experimental procedure

Let us assume that the whole temperature course Tw(t) has been recorded, and therefore the
equilibrium temperature need not be calculated, see Fig.4.

Fig.4 Experimental setup.

Knowing initial temperature of solid T0 and initial temperature of water bath Tw0 the
dimensionless coefficient M, see Eq.(10), can be calculated as
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For this M the smallest positive eigenvalue χ1 have to be solved numerically from Eq.(18) or
expressed from approximation (19). The temperature of water can be described by only the
first term of expansion (27) at a sufficiently long time (τ>0.1) as
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This relationship enables to evaluate thermal diffusivity a (e.g. from the slope of T(t) in a
semilogarithmic plot). Thermal conductivity is related to the thermal diffusivity as

a
cp

=
λ
ρ

(31)

Because the mass and thermal capacity of water is known, the product ρcp can be evaluated
from the measured value of M

ρ
π
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Thus the experiment recording initial temperature of cylindrical sample T0 and the time course
of liquid temperature Tw(t) yields the ρcp value from Eq.(32), and thermal conductivity from
Eq.(31). 
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List of symbols
Ai coefficient of expansion (17)
a thermal diffusivity [m2.s-1]
cw specific heat capacity of liquid [J.kg-1.K-1]
cp specific heat capacity of cylinder [J.kg-1.K-1]
H height of cylinder [m]
J0(x) Bessel function
M relative heat capacity of liquid, Eq.(10)
Mw mass of liquid [kg]
R radius of cylinder [m]
r dimensionless radial coordinate (r/R)
S surface of sample [m2]

T temperature of cylinder [K]
Tw temperature of liquid [K]
Te equilibrium temperature [K]
T* dimensionless temperature, see Eq.(14) [-]
t time [s]
χ eigenvalue, see Eq.(30)
δ penetration depth [m]
λ thermal conductivity of cylinder [W.m-1.K-1]
ρ density of cylinder [kg.m-3]
τ dimensionless time (Fourier number)
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