Mathematics II - tutorials

Assessment requirements: Attendance is mandatory - 4 absences are allowed 3 parts:

- 1. Differential calculus (Ex. 1., 2.) \rightarrow approximately the end of March
- 2. Double and Triple integrals (Ex. 3., 4.) \rightarrow approximately the end of April
- 3. The rest (Ex. 5., 6.) \rightarrow the end of the semester

consultations - after the Friday's tutorial (or after e-mail agreement)

Motivation

Find and sketch a Domain of definition of the following functions:

1.
$$f(x,y) = \sqrt{x^2 + y}$$

2.
$$f(x, y, z) = \ln(z - x^2 - y^2)$$

Quadrics and Geometry repetition

1. Identify the type of a Quadric, its center and other parameters (axes, half-axis ...):

(a)
$$\frac{(x-4)^2}{4} + \frac{(y-1)^2}{4} + \frac{z^2}{8} = 1$$

(b)
$$(x-2)^2 + (y+1)^2 + (z+10)^2 = 9$$

(c)
$$\frac{(x-1)^2}{4} - \frac{(y-2)^2}{3} + (z+1)^2 = 1$$

(d)
$$-\frac{(x-1)^2}{4} + \frac{(y-2)^2}{3} - (z+1)^2 = 1$$

- 2. Write an equation of following Quadric:
 - (a) Elliptic paraboloid (C = [0; 0; 0], a||z)
 - (b) Hyperbolic paraboloid (V = [0; 0; 0], a||z)
 - (c) Elliptic cylinder (a||z)
 - (d) Parabolic cylinder (V = [0; 0; 0], a||z)
 - (e) Hyperbolic cylinder (C = [0; 0; 0], a||z)
- 3. Identify the type of a Quadric and sketch a given cut (+ write its equation)

(a)
$$z = x^2 + 4y^2$$
, cut for $z = 1$

(b)
$$x^2 + y^2 - z^2 = 0$$
, cut for $x = 0$

(c)
$$x^2 - y^2 + z^2 = 0$$
, cut for $z = 1$

(d)
$$x^2 + y^2 = z - 1$$
, cut for $y = 0$

(e)
$$z^2 - x^2 - y^2 = 1$$
, cut for $z = 2$

(f)
$$x^2 + 4y^2 + z^2 = 4$$
, cut for $z = 0$

(g)
$$z^2 = y - x^2$$
, cut for $y = 0$ and $x = 0$

4. Write the canonical equation of a given Quadric and identify its type:

(a)
$$x^2 + y^2 + z^2 - 4x + 6y - 6z + 3 = 0$$

(b)
$$-4x^2 + 9y^2 + 9z^2 + 18y - 90z + 270 = 0$$

(c)
$$x^2 - 6x + y^2 - 16y + z^2 - 8z + 37 = 0$$

(d)
$$2x^2 - 8x + 3y^2 + 18y - 6z + 35 = 0$$

(e)
$$-3x^2 + 6x + 4y^2 - 16y + 12z^2 + 24z + 13 = 0$$

5. Identify and sketch the domain Ω :

(a)
$$\Omega = \{ [x, y] \in \mathbb{R}^2; \ x^2 + y^2 \le 16 \quad \land \quad y \le x^2 + 2 \}$$

(b)
$$\Omega = \{[x,y] \in \mathbb{R}^2; \ \frac{x^2}{36} + \frac{y^2}{25} \le 1 \quad \land \quad \frac{y^2}{4} - x^2 > 1\}$$

(c)
$$\Omega = \{ [x, y, z] \in \mathbb{R}^3; \ z = x^2 + 4y^2 \quad \land \quad z = 16 \}$$

(d)
$$\Omega = \{ [x, y, z] \in \mathbb{R}^3; \ x^2 + y^2 \le 4 \quad \land \quad z = 7 + x^2 + y^2 \}$$

(e)
$$\Omega = \{ [x, y, z] \in \mathbb{R}^3; \ x^2 + y^2 \le z^2 \quad \land \quad z = 6 - x^2 - y^2 \}$$

(f)
$$\Omega = \{ [x, y, z] \in \mathbb{R}^3; \ 2x^2 - y^2 - z^2 = 4 \quad \land \quad 0 \le x \le 2 \}$$

(g)
$$\Omega = \{ [x, y, z] \in \mathbb{R}^3; \ z^2 \le 10 - x^2 - y^2 \quad \land \quad x^2 + y^2 + z^2 = 10 \}$$