Limits

- 1. (a) Find a candidate for a limit $\lim_{[x,y]\to[0;0]} \frac{1}{\sqrt{x^2+y^2}}$ (b)* Can you prove (in this special case) that the candidate is the only possibility?
- 2. (a) Find a candidate for a limit $\lim_{[x,y]\to[0;0]} \frac{\sin x \sin y}{xy}$ (b)* Can you prove (in this special case) that the candidate is the only possibility?
- 3. (a) Find a candidate for a limit $\lim_{[x,y]\to\infty} (x^2 + 3y^2)e^{-x^2-y^2}$ (b)* Can you prove that the candidate is the only possibility?
- 4. (a) Find a candidate for a limit $\lim_{[x,y]\to[0,0]} \frac{x+y}{xy}$
 - (b) Prove that the limit doesn't exist. ${\scriptstyle hint: \ Try \ different \ lines}$
- 5. Prove that the $\lim_{[x,y]\to[0;0]} \frac{xy^2}{x^2+y^4}$ doesn't exist. hint: Try different parabolas
- 6. Decide if the following function is continuous in point [0; 0]:

 $f(x,y) = \begin{cases} 2 & \text{for } [x,y] = [0;0] \\ \frac{\sin(x^2 + y^2)}{\sqrt{x^2 + y^2 + 1} - 1} & \text{elsewhere} \end{cases}$

Derivatives with parameters

- 7. Compute the derivative of the function $f(x) = \frac{1}{\tan(\frac{a}{x})}$, where $a \in \mathbb{R}$ is a parameter.
- 8. a) Compute the derivative of the function $f(x) = \frac{1}{\sqrt{x^2 + a^2 + b^2}}$, where $a, b \in \mathbb{R}$ are parameters. b) Where is the function increasing?
- 9. a) Compute the derivative of the function f(y) = a² + a(sin y y⁴), where a ∈ ℝ is a parameter.
 b) Decide if the function is decreasing or increasing in the neighborhood of point y₀ = 0.
- 10. Compute the derivative of the function $f(y) = ae^{ay^2} + b^5y^{-4}$, where $a, b \in \mathbb{R}$ are parameters.

Partial derivatives

11. Find a domain of definition of following functions (and sketch it), compute all partial derivatives:

(a)
$$f(x, y) = \sqrt{2x - y}$$

(b) $f(x, y) = x^2 + y^3 - 2y^2 - 4xy$
(c) $f(x, y) = xe^y + x^2 - 2y^2 - 2$
(d) $f(x, y) = \ln(x - y^2)$
(e) $f(x, y) = 3\cos(4y)\sin(x) - \sin(2x)$
(f) $f(x, y) = \sqrt{xy}$
(g) $f(x, y) = \sqrt{xy}$
(h) $f(x, y) = x^y$
(i) $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}$
(j) $f(x, y, z) = xz - 5x^2y^3z^4$

12. To given function $f(x, y, z, t) = x^2 y \cos(\frac{z}{t})$ find the $\frac{\partial f}{\partial t}$.