(Gradient and directional derivative)

1. Given $f(x, y)=x^{2}+2 x y-3 y^{2}$ and a point $A=[1 ; 1]$,
a) compute the (directional) derivative of f at point A in direction given by vector $\vec{s}=(3 ; 4)$.
b) Describe the behavior of the function in this direction.
c) Compute the derivative of f at point A in the direction given by the vector $\vec{t}=\frac{1}{\sqrt{2}}(1 ; 1)$.

What can you say about the function in this direction at the point A ?
2. Given $f(x, y)=\cos x y+e^{x y}$ and a point $A=[1 ; 0]$,
a) determine the direction \vec{s} of maximal increase of the function f at a point A.
b) Compute the (directional) derivative of f at point A in the direction given by a vector \vec{s}.
c) Compute the derivative of f at point A in the direction given by a vector $\vec{t}=(1 ; 2)$. What can you say about the function in this direction?
3. Given $f(x, y)=\sqrt{9-x-y^{2}}$ and a point $A=[1 ;-2]$,
a) compute gradient of the function at point A.
b) Find the direction vector \vec{u} in which the function doesn't change its value.
4. Given $f(x, y, z)=x^{2}-2 y^{2}-3 z^{3}-17$ and a point $A=[1 ; 1 ; 1]$, compute the directional derivative of f at point A in the direction given by a vector $\vec{s}=(1 ; 1 ; 1)$. What can you say about the function in this direction?

Local extrema

5. Given $f(x, y)=x^{2} y+\cos y+y \sin x$,

Find all partial derivatives of first and second order. Decide if the origin $(O=[0 ; 0])$ is the critical point of the function f (verify). Find the Hesse matrix in this point.
6. Given $f(x, y)=x^{y}$,

Find all partial derivatives of first and second order. Decide if $P=[1 ; 1]$ is the critical point of the function f (verify).
7. Find the local extrema of the function $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$, i.e. find their position, type and value.
8. Find the local extrema of the function $f(x, y)=2 x y-5 x^{2}-2 y^{2}+4 x+4 y$, i.e. find their position, type and value.
9. Find the local extrema of the function $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$, i.e. find their position, type and value.
10. Determine if the function $f(x, y)=4 x y-x^{4}-y^{4}-11$ has local extremes at points $A_{0}=[0 ; 0]$ or $A_{1}=[1 ; 1]$. If the answer is YES, find its type and value.
11. Has the function $f(x, y)=e^{x} \cos y$ local extrema?
12. Find all critical points of the function $f(x, y)=y \cos x$.

