Chain rule (derivatives of composite functions)

- 1. Given $f(u, v) = u^2 \ln v$, compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when you know that $u(x, y) = \frac{x}{y}$ and v(x, y) = 3x 2y.
- 2. Given unknown function z(x,y) = f(u,v) = f(u(x,y),v(x,y)) and functions $u(x,y) = x^2 y^2$, $v(x,y) = e^{xy}$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at point A = [1;2] when you know (from physics) that $\frac{\partial f}{\partial y}(A) = 1$ and $\frac{\partial f}{\partial y}(A) = 0$.

Implicitly defined functions

- 3. Given $F(x, y) = x^3 + y^3 6xy + 4$, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) near the point A = [1; 1]. Compute its derivative $\frac{df}{dx}$ at point $x_0 = 1$ and find an equation of tangent to the graph of f(x).
- 4. Verify that by equation $x^3y + y^3x + x^2y 3 = 0$ is implicitly defined function y = f(x) near the point A = [1; 1]. Compute its derivative $\frac{df}{dx}$ at point $x_0 = 1$ and find an equation of normal to the graph of f(x).
- 5. Given $F(x, y) = \sin(x + y) y^2 \cos x$, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) in the neighborhood of the point $A = [\pi; 0]$. Compute its derivative $\frac{df}{dx}$ at point $x_0 = \pi$ and describe the behavior of f(x) near point A (is it increasing or decreasing, how fast?).
- 6. Given $F(x, y) = x^3 + 2x^2y + y^4$ verify that by the equation F(x, y) = 1 is implicitly defined function y = f(x) near the point A = [2; -1].

Compute the first and the second derivative of f at point $x_0 = 2$.