(implicitly defined functions)

- 1. Prove that the equation $\ln(x+2y)+x-1=0$ imlicitly defines (in some neighborhood) a function y = f(x) which satisfies f(1) = 0. Approximate the value f(1.1) by the second order Taylor's polynomial.
- 2. Given F(x, y) = x³ + y³ 2x² xy + 1, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) near the point A = [1;0]. Compute the first and the second derivative of y = f(x) at point x₀ = 1 and describe the behavior of y = f(x) near point A (is it increasing or decreasing, convex or concave?).
- 3. a) Find equation of an iso-curve for F(x, y) = xye^{x-y} at point P = [1; 2].
 b) Find a tangent line to this iso-curve at point P.
- 4. Given F(x, y) = ln(xy + 4) 2 ln 2 and a point A = [0; 2]. Can the equation F(x, y) = 0 defined correctly the implicitly defined function y = f(x) near the point A? If not, suggest how to compute tangent to the iso-curve F(x, y) = 0. (hint: switch the variables)
- 5. Given F(x, y, z) = x³ + y³ + z³ + xyz 6,
 a) verify that by the equation F(x, y, z) = 0 is implicitly defined function z = f(x, y) near the point A = [1; 2; -1].
 b) Compute all the partial derivatives of z = f(x, y) at point T = [1; 2].
 c) Find an equation of the tangent plain which is tangent to the graph of z = f(x, y) at tangent
 - c) Find an equation of the tangent plain which is tangent to the graph of z = f(x, y) at tangent point A.
- 6. Verify that by the equation $xz^2 x^2y + y^2z + 2x y = 0$ is implicitly defined function z = f(x, y) near the point A = [0; 1; 1]. Find a direction in which is the function z = f(x, y) increasing the most at point [0; 1].
- 7. Given $F(x, y, z) = z^3 + 3x^2z 2xy = 0$
 - (a) $\exists ? z = f(x, y)$ near the point A = [-1; -2; 1] defined implicitly?
 - (b) Find its gradient $(\nabla f =?)$ at point $A_0 = [-1; -2]$.
 - (c) Compute a tangent plane (τ) to z = f(x, y) at point A.