Double integrals: applications, polar coordinates

1. Given 2D body: $D=\left\{[x, y] \in \mathbb{R}^{2}: 0 \leq x \leq 1 \wedge 0 \leq y \leq 2 x+1\right\}$.

Its $(2 \mathrm{D})$ density $\rho(x, y)=x$.
(a) Compute its mass.
(b) Compute the static moment according to y-axis ($m_{y}=$?).
(c) Determine the x-coordinate of center of mass $\left(x_{C}=\right.$?).
(HW:) Determine the y-coordinate of center of mass $\left(y_{C}=?\right) . \quad\left[y_{C}=17 / 14\right]$
2. Given 2D body bounded by curves: $y=\frac{2}{x}-1 ; \quad y=x ; \quad y=0$,
with $(2 \mathrm{D})$ density $\rho(x, y)=(y+1)^{2}$. Compute its moment of inertia relative to x-axis $\left(J_{x}=\right.$?)
3. Given $D=\left\{[x, y] \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4 \wedge y \geq 0\right\}$.
(a) Transfer the following integral to polar coordinates:

$$
\iint_{D} x y \mathrm{~d} x \mathrm{~d} y .
$$

(b) Compute the integral.
(c) Write one possible physical meaning of the integral, $\rho(x, y)=$?.
(HW:) Determine the center of mass $(C=?)$ when $\rho(x, y)=y . \quad\left[y_{C}=3 \pi / 8\right]$.
4. Given $f(x, y)=\frac{1}{\sqrt{9-x^{2}-y^{2}}}$
and $D=\left\{[x, y] \in \mathbb{R}^{2} ; x \geq 0 \wedge x^{2}+y^{2} \leq 8\right\}$.

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=?
$$

5. Given $D=\left\{[x, y] \in \mathbb{R}^{2}: \frac{x^{2}}{9}+\frac{y^{2}}{4} \leq 1 \wedge x \geq 0 \wedge y \geq 0\right\}$.
(a) Transfer the following integral to generalized polar coordinates:

$$
\iint_{D} x y^{2} \mathrm{~d} x \mathrm{~d} y
$$

(b) Compute the integral.
(c) Write all possible physical meanings of the integral, $\rho(x, y)=$?
6. Given $D=\left\{[x, y] \in \mathbb{R}^{2}: 1 \leq y \leq x^{2} \wedge(0) \leq x \leq 2\right\}$,
compute volume of a body form above domain D under the graph of function $f(x, y)=3+\frac{x}{y^{2}}$.

