Double integrals: applications, polar coordinates

- 1. Given 2D body: $D=\{[x,y]\in\mathbb{R}^2:\ 0\leq x\leq 1\ \land\ 0\leq y\leq 2x+1\}.$ Its (2D) density $\rho(x,y)=x.$
 - (a) Compute its mass.
 - (b) Compute the static moment according to y-axis $(m_y =?)$.
 - (c) Determine the x-coordinate of center of mass $(x_C =?)$.

(HW:) Determine the y-coordinate of center of mass $(y_C =?)$. $[y_C = 17/14]$

- 2. Given 2D body bounded by curves: $y = \frac{2}{x} 1$; y = x; y = 0, with (2D) density $\rho(x, y) = (y + 1)^2$. Compute its moment of inertia relative to x-axis $(J_x = ?)$
- 3. Given $D = \{ [x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land y \ge 0 \}.$
 - (a) Transfer the following integral to polar coordinates:

$$\iint\limits_{D} xy \, \mathrm{d}x \mathrm{d}y.$$

- (b) Compute the integral.
- (c) Write one possible physical meaning of the integral, $\rho(x,y) = ?$.

(HW:) Determine the center of mass (C=?) when $\rho(x,y)=y$. $[y_C=3\pi/8]$.

4. Given $f(x,y) = \frac{1}{\sqrt{9-x^2-y^2}}$ and $D = \{[x,y] \in \mathbb{R}^2; \ x \ge 0 \ \land \ x^2 + y^2 \le 8\}.$

$$\iint\limits_{D} f(x,y) \, \mathrm{d}x \mathrm{d}y = ?$$

- 5. Given $D = \{ [x, y] \in \mathbb{R}^2 : \frac{x^2}{9} + \frac{y^2}{4} \le 1 \land x \ge 0 \land y \ge 0 \}.$
 - (a) Transfer the following integral to generalized polar coordinates:

$$\iint\limits_{D} xy^2 \, \mathrm{d}x \mathrm{d}y.$$

- (b) Compute the integral.
- (c) Write all possible physical meanings of the integral, $\rho(x,y) = ?$
- 6. Given $D=\{[x,y]\in\mathbb{R}^2:\ 1\leq y\leq x^2\ \land\ (0)\leq x\leq 2\},$ compute volume of a body form above domain D under the graph of function $f(x,y)=3+\frac{x}{y^2}.$

1