(Triple integrals)

1. Given a prism M bounded by surfaces: $x=1 ; y=0 ; y=x ; z=0 ; z=\sqrt{2}$

Sketch the projection to $x y$ plane, sketch projection to $x z$ plane and compute

$$
\iiint_{M}(x+y+z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

Choose which approach is better (projection to $x y$ plane or projection to $x z$ plane).

Triple integrals: applications, cylindrical coords.

2. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq x \leq 3 \wedge 0 \leq y \leq 3 \wedge 0 \leq z \leq x y\right\}$. Compute static moment about the $x y$-plane when $\rho(x, y, z)=x^{2}+y^{2}$.
3. Given a homogeneous body (in 3D) bounded by surfaces: $z=\sqrt{3 x^{2}+3 y^{2}} ; z=3$ Sketch the projection to $x y$-plane and compute moment of inertia about the z-axes. $\rho(x, y, z)=\rho=$ const.
4. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq 4-\sqrt{x^{2}+y^{2}}\right\}$.
(a) Transfer the following integral to cylindrical coordinates:

$$
\iiint_{M} \sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
$$

(b) Compute the integral.
(c) Write one possible physical meaning of the integral, $\rho(x, y, z)=$?.
5. Given a body: $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq 1 \wedge 0 \leq y \leq x \wedge \frac{x^{2}}{3}+y^{2} \leq 1\right\}$.
(a) Transfer the following integral to generalized cylindrical coordinates:

$$
\iiint_{M} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
$$

(b) Compute the integral.
(c) Write one possible physical meaning of the integral.
6. Sketch (in cuts) a body $M=\left\{[x, y, z] \in \mathbb{R}^{3}: 0 \leq z \leq h-\sqrt{x^{2}+y^{2}}\right\}$. $h=$ const. Compute the center of mass z-coordinate for homogeneous body M ($\rho(x, y, z)=\rho=$ const.).

$$
\left[C_{z}=\frac{m_{x y}}{m}=\frac{h}{4}\right]
$$

