(Conservative fields, potential)

- 1. Find a potential (and verify its existence) of a vector field $\vec{f}(x,y) = (x+y, x-y)$. Then compute a circulation of the vector field along a positively oriented circle $x^2 + y^2 = 4$.
- 2. Given a conservative vector field $\vec{f}(x,y) = (\sqrt{x} + y, \sqrt{y} + x)$.
 - (a) Find the potential of the vector field (determine where it is possible).
 - (b) Compute $\int_C \vec{f} \cdot d\vec{s}$ where $C = \{ [x, y] \in \mathbb{R}^2 : y = x^2 \land 1 \le x \le 2 \}.$
- 3. Given an incomplete potential $\varphi(x, y) = 2xy^{3/2} + K(y)$, containing an unknown function K(y) depending just on one variable (y). The corresponding conservative/potential vector field is $\vec{f}(x, y) = (U(x, y); V(x, y))$, where $V(x, y) = 3x\sqrt{y} + y$.
 - (a) From the definition of potential determine the component U of the given vector field \vec{f} .
 - (b) Finish the computation of potential $\varphi(x, y)$ by finding the unknown function K(y).
 - (c) Find the domain where the vector field $\vec{f}(x, y)$ is conservative.
 - (d) Compute the work done by the force \vec{f} acting along the oriented line segment C from the point A = [1; 0] to the point B = [3; 4].
- 4. $\vec{f}(x,y) = (\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}).$
 - (a) Where is \vec{f} conservative?
 - (b) Is $\varphi(x,y) = \sqrt{x^2 + y^2}$ its potential?
 - (c) Compute the work done along a curve $x^2 + y^2 = 4$ oriented counter-clockwise.

Line integral repetition

- 5. A curve is given as a line segment from E = [1;0;2] to F = [1;2;1].
 - (a) Compute its mass when $\rho(x, y, z) = x^2 + y^2$.
 - (b) For the given potential $\varphi(x, y, z) = x^2y + 2y^4z$ find the corresponding vector field and compute its work done along the curve.
- 6. Given curve is a boundary of domain $\{[x, y] \in \mathbb{R}^2 : y \ge x^2 \land x \ge 0 \land y \le 1\}$ oriented negatively. Compute the circulation of a vector field $\vec{f}(x, y) = (-y/2, x/2)$ over the curve.