Chain rule (derivatives of composite functions)

- 1. Given $f(u,v) = u^2 \ln v$, compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when you know that $u(x,y) = \frac{x}{y}$ and v(x,y) = 3x 2y.
- 2. Given unknown function z(x,y) = f(u,v) = f(u(x,y),v(x,y)) and functions $u(x,y) = x^2 y^2$, $v(x,y) = e^{xy}$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at point A = [1;2] when you know (from physics) that $\frac{\partial f}{\partial y}(A) = 1$ and $\frac{\partial f}{\partial y}(A) = 0$.

Implicitly defined functions

- 3. Given $F(x,y) = x^3 + y^3 6xy + 4$, verify that by the equation F(x,y) = 0 is implicitly defined function y = f(x) near the point A = [1;1]. Compute its derivative $\frac{\mathrm{d}f}{\mathrm{d}x}$ at point $x_0 = 1$ and find an equation of tangent to the graph of f(x).
- 4. Verify that by equation $x^3y + y^3x + x^2y 3 = 0$ is implicitly defined function y = f(x) near the point A = [1; 1]. Compute its derivative $\frac{df}{dx}$ at point $x_0 = 1$ and find an equation of normal to the graph of f(x).
- 5. Given $F(x,y) = \sin(x+y) y^2 \cos x$, verify that by the equation F(x,y) = 0 is implicitly defined function y = f(x) in the neighborhood of the point $A = [\pi; 0]$.

 Compute its derivative $\frac{\mathrm{d}f}{\mathrm{d}x}$ at point $x_0 = \pi$ and describe the behavior of f(x) near point A (is it increasing or decreasing, how fast?).
- 6. Given $F(x,y) = x^3 + 2x^2y + y^4$ verify that by the equation F(x,y) = 1 is implicitly defined function y = f(x) near the point A = [2; -1].

 Compute the first and the second derivative of f at point $x_0 = 2$.
- 7. Given $F(x,y) = x^2 + \frac{1}{2}y^2 + xy 9\ln(x)$
 - (a) Find iso-curve ι : F(x,y) = 1.
 - (b) Verify that by the iso-curve equation (F(x,y)=1) is implicitly defined function y=f(x) near the point A=[1;0].
 - (c) Approximate the iso-curve ι in a point A with the 2^{nd} order Taylor polynomial.

Results

1.
$$\frac{\partial f}{\partial x} = 2\frac{x}{y^2} \ln(3x - 2y) + \frac{3x^2}{y^2(3x - 2y)}$$
$$\frac{\partial f}{\partial y} = -\frac{2x^2}{y^3} \ln(3x - 2y) - \frac{2x^2}{y^2(3x - 2y)}$$

2.
$$\frac{\partial z}{\partial x}(A) = -4$$
, $\frac{\partial z}{\partial y}(A) = 2$.

3.
$$\frac{\mathrm{d}f}{\mathrm{d}x}(1) = y'(1) = -1$$
 and tangent line: $y - 1 = -1(x - 1)$

4.
$$\frac{\mathrm{d}f}{\mathrm{d}x}(1) = y'(1) = -\frac{6}{5}$$
 and normal line: $y - 1 = \frac{5}{6}(x - 1)$

5.
$$\frac{\mathrm{d}f}{\mathrm{d}x}(\pi) = y'(\pi) = -1 < 0$$
, function is decreasing with the angle $\alpha = -\frac{\pi}{4}$

6.
$$\frac{\mathrm{d}f}{\mathrm{d}x}(2) = y'(2) = -1, \frac{\mathrm{d}^2f}{\mathrm{d}x^2}(2) = y''(2) = -1$$

7. (a)
$$x^2 + \frac{1}{2}y^2 + xy - 9\ln(x) = 1$$

7. (a)
$$x^2 + \frac{1}{2}y^2 + xy - 9\ln(x) = 1$$

(c) $f(x) \approx T_2(x) = 0 + 7(x - 1) - 37(x - 1)^2$