(implicitly defined functions)

- 1. Prove that the equation $\ln(x+2y)+x-1=0$ imlicitly defines (in some neighborhood) a function y = f(x) which satisfies f(1) = 0. Approximate the value f(1.1) by the second order Taylor's polynomial.
- 2. Given F(x, y) = x³ + y³ 2x² xy + 1, verify that by the equation F(x, y) = 0 is implicitly defined function y = f(x) near the point A = [1;0]. Compute the first and the second derivative of y = f(x) at point x₀ = 1 and describe the behavior of y = f(x) near point A (is it increasing or decreasing, convex or concave?).
- 3. a) Find equation of an iso-curve for F(x, y) = xye^{x-y} at point P = [1; 2].
 b) Find a tangent line to this iso-curve at point P.
- 4. Given F(x, y) = ln(xy + 4) 2 ln 2 and a point A = [0; 2].
 Can the equation F(x, y) = 0 defined correctly the implicitly defined function y = f(x) near the point A?
 If not, suggest how to compute tangent to the iso-curve F(x, y) = 0. (hint: switch the variables)
- 5. Given F(x, y, z) = x³ + y³ + z³ + xyz 6,
 a) verify that by the equation F(x, y, z) = 0 is implicitly defined function z = f(x, y) near the point A = [1; 2; -1].
 b) Compute all the partial derivatives of z = f(x, y) at point T = [1; 2].
 c) Find an equation of the tangent plain which is tangent to the graph of z = f(x, y) at tangent
 - c) Find an equation of the tangent plain which is tangent to the graph of z = f(x, y) at tangent point A.
- 6. Verify that by the equation $xz^2 x^2y + y^2z + 2x y = 0$ is implicitly defined function z = f(x, y) near the point A = [0; 1; 1]. Find a direction in which is the function z = f(x, y) increasing the most at point [0; 1]. Compute a directional derivative at the point [0; 1] in direction $\vec{s} = (3, -4)$.
- 7. Given $F(x, y, z) = z^3 + 3x^2z 2xy = 0$
 - (a) $\exists ? z = f(x, y)$ near the point A = [-1; -2; 1] defined implicitly?
 - (b) Find its gradient $(\nabla f =?)$ at point $A_0 = [-1; -2]$.
 - (c) Compute a tangent plane (τ) to z = f(x, y) at point A.

Results

- 1. $F(x,y) = \ln(x+2y) + x 1 = 0, A = [1;0]$ $f(1.1) \approx T_2(1.1) = -0.0975$
- 2. $\frac{df}{dx}(1) = y'(1) = -1 < 0$, decreasing $\frac{d^2f}{dx^2}(1) = y''(1) = 4 > 0$, convex
- 3. a) $F(x,y) = xye^{x-y} = 2/e$ b) y - 2 = 4(x - 1).
- 4. NO, but $F(x^*, y^*) = \ln(y^*x^* + 4) 2\ln 2 = 0$ near point $A^* = [2, 0]$ can. tangent line : $y^* - 0 = 0(x^* - 2)$, i.e. $y^* = 0$, in original variables x = 0
- 5. b) $\frac{\partial f}{\partial x}(T) = z_x(T) = -1/5, \ \frac{\partial f}{\partial y}(T) = z_y(T) = -11/5$ c) tangent plane: $z + 1 = -\frac{1}{5}(x - 1) - -\frac{11}{5}(y - 2)$
- 6. $\nabla f([0;1]) = (-3;-1)$ $\frac{\partial f}{\partial \vec{s}}([0;1]) = -1$
- 7. $\nabla f([-1;-2]) = (1/3;-1/3)$ $\tau: z - 1 = \frac{1}{3}(x+1) - \frac{1}{3}(y+2)$