Mathematics II A - May 19, 2022

- Given real function of two variables: $f(x,y) = x^2 + y^2 2x 4y$ and domain $D = \{[x;y] \in \mathbb{E}_2 : x \ge 0, y \ge x, y \le 3\}.$
- a) Justify the existence of absolute (global) extrema of the given function f on the set D. (Use the sufficient conditions theorem on the existence of global extrema.)
- b) Find the absolute (global) extrema of the given function f on the set D.
- **2.** Given function $F(x,y) = y + \ln y + x^3$
- a) Verify, that by F(x,y) = 0 is in the neighborhood of the point T = [-1;1] implicitly defined function y = f(x) which has continuous first and second derivative.

 (i.e. write down and verify all the assumptions of the corresponding theorem)
- b) Write the equation of the tangent to the graph of the function y = f(x) at the point T.
- c) Compute f''(-1) and decide if the function f(x) is convex or concave (concave up or down) at x = -1.
- d) Write down the Taylor's polynomial $T_2(x)$ of the function f(x) centered at x = -1.
- Given solid body $M \subset \mathbb{E}_3$ bounded by surfaces $z=0,\,z=2+\frac{1}{y},\,y=1,\,y=x$ and y=8-x.
- a) Sketch the projection of the body M into the xy plane, i.e. sketch the region $M_{xy} = \{[x;y] \in \mathbb{E}_2 : y \ge 1; y \le x; y \le 8 x\}.$

Write this domain M_{xy} as an elementary domain of integration with respect to y axis.

- b) Compute the volume of the given solid body M.
- **4.** The solid body $B \subset \mathbb{E}_3$ (elliptic cylinder) is defined as $B = \{[x; y; z] \in \mathbb{E}_3 : 16x^2 + 9y^2 \le 144; -1 \le z \le 3\}.$
 - a) Transform the solid B into generalized cylindrical coordinates.

 (i.e. write down the transformation formulas and determine the bounds for the transformed variables)
 - b) Use definition to compute the Jacobi matrix and Jacobian of the transformation from a).
 - c) Compute the integral $\iiint_B z^2 \sqrt{16x^2 + 9y^2} \ dxdydz.$
- **5.** Given vector field $\vec{f}(x,y) = (x+y; x^2-y)$ and domain $\Omega = \{[x;y] \in \mathbb{E}_2 : x^2 \le y \le \sqrt{x}\}.$
- a) Compute the integral $\oint_C \vec{f} \cdot ds$ where the closed curve $C = +\partial \Omega$ is positively oriented boundary of Ω .
- b) Write down the Green's theorem (including all assumptions, notation and the statement).
- c) Is the given vector field $\vec{f}(x, y)$ potential (conservative)? Why?
- 6. A three-dimensional thin plate has a shape of the surface $Q = \{[x;y,z] \in \mathbb{E}_3 : x^2 + y^2 = 4; 0 \le z \le 4\}$ and (surface) density prescribed by $\rho(x,y,z) = \mathrm{e}^{-z}$.
 - a) Sketch the surface Q and suggest a suitable parametrization P(u,v) of Q including the domain for parameters u and v.
 - b) Compute the mass m of the above described thin plate.