Chapter 1

Analytic geometry in E_{2} - Results

1.1 the parametric equations of line p and $q: p: x(t)=2+t, y(t)=5+3 t ; q: x(s)=$ $4+4 s, y(s)=7$
general equation of both lines: $p: 3 x-y-1=0 q: y=7$
parametric equations of line segment $A B: x(w)=2, y(w)=5-4 w, w \in\langle 0 ; 1\rangle$ parametric equations of ray $A B$ with startpoint $A: x(q)=2, y(q)=5-4 q, q \in\langle 0 ;+\infty)$
1.2 the parametric equation of line $A B: x(t)=-5+3 t, y(t)=18+4 t$ general equation of line $A B: p: 4 x-3 y+74=0$
slope equation of line $A B: p: y=\frac{4}{3} x+\frac{74}{3}$
intercept equation of line $A B:-\frac{x}{\frac{74}{4}}+\frac{y}{\frac{74}{3}}=1$
$1.3 p: x=-1$
$1.4 p: x(t)=1+t, y(t)=-1$
$1.5 p: y=-\frac{\sqrt{2}}{2} x-\sqrt{2}$
$1.6 d(A, p)=\frac{11 \sqrt{5}}{5}$
1.7 lines p and q are intersecting lines, point of intersection is $R=\left[\frac{51}{5}, \frac{72}{5}\right]$, angle is 60° $r: x(w)=18-7 w, y(w)=17-14 w$
$1.8 C=[1,2]$
$1.9 p: 3 x-7 y+15=0$ or $p^{\prime}: 7 x+3 y-23=0$
1.10 ray q intersects line segment $A B$ at point $R=[2,4]$
$1.11 A=[1,-6], B=[-2,3], C=[4,5], \alpha=33^{\circ} 41^{\prime} 24^{\prime \prime}, \beta=90^{\circ}, \gamma=56^{\circ} 18^{\prime} 36^{\prime \prime}$, altitude of $v_{b}=\frac{6 \sqrt{130}}{13}=5.26$, area of triangle $A B C$ is $S=30$
$1.12 B=[11,1], D=[3,3]$
1.13 four results: $X_{1}=[2,0], Y_{1}=[0,1], X_{2}=[-2,0], Y_{2}=[0,-3], X_{3}=[-3+$ $\sqrt{13}, 0], Y_{3}=[0,4-\sqrt{13}], X_{4}=[-3-\sqrt{13}, 0], Y_{4}=[0,4+\sqrt{13}]$

Conics:

1.14 it is a circle with centre $S=[3,-2]$ and radius $r=\sqrt{5}$
tangent lines are $t_{1}: x+2 y-4=0, t_{2}: 2 x-y-3=0$
$1.15 c:(x-9)^{2}+(y-7)^{2}=85$, centre $S=[9,7]$ and radius $r=\sqrt{85}$
1.16 it is a parabola with vertex $V=\left[-\frac{23}{5}, \frac{3}{5}\right]$ and it intersects only the x-axis at point $\left[-\frac{89}{20}, 0\right]$
1.17 it is an ellipse with centre $S=[1,-2]$ and it intersects axes at points $X=[1,0]$ and $Y=[0,-2]$
1.18 it is a hyperbola with centre $S=[2,-3]$ and it intersects axes at points $X=\left[\frac{4}{3}, 0\right]$ and $Y=[0,-2]$

Regions:

1.19 points of intersection: $[2,2],[1,1],\left[2, \frac{1}{2}\right]$
border curves are: two lines and hyperbola
1.20 points of intersection: $[8,-4],[2,2],[18,-6],[8,4]$ border curves are: two lines and parabola
1.21 points of intersection: $[6,3],[-2,3]$ border curves are: two rays and line
1.22 points of intersection: $[-2,-1],[2,-1],[-2, \sqrt{6}],[-2,-\sqrt{6}],[2, \sqrt{6}],[2,-\sqrt{6}]$ border curves are: line and hyperbola and strip
1.23 points of intersection: $[-2,0],[2,0],[-1,0],[1,0],[0,2],[0,-2],[0,-1],[0,1]$ border curves are: two circles and axes
1.24 points of intersection: $[0,0],[1,1],[4,2]$ border curves are: two lines and parabola

Chapter 2

Analytic geometry in E_{3}

2.1 to prove it, use dot product of each two vectors $A B, A C, B C$, where it is zero there is right angle $\beta=45^{\circ}$.
$2.2 \mathrm{c}=\left(\frac{\sqrt{35}}{35},-\frac{3 \sqrt{35}}{35},-\frac{\sqrt{35}}{7}\right)$

$$
\mathbf{c}^{\prime}=\left(\frac{-\sqrt{35}}{35}, \frac{3 \sqrt{35}}{35}, \frac{\sqrt{35}}{7}\right)
$$

2.3 area $S=\frac{13}{2} \sqrt{10}$
2.4 points A, B, C, D lie in same plane
2.5 angle between planes is $\alpha=60^{\circ}$
2.6 angle between planes $A B C$ and $A C F$ is $\rho=54^{\circ} 44^{\prime} 8^{\prime \prime}$
$2.7 \rho: y-z-1=0$
$2.8 \rho: y=-7$
$2.9 \rho: x+y+z-2=0$
$2.10 d(\rho, \sigma)=4$
$2.11 \rho:-5 x+y+3 z+5=0$
$2.12 t_{c}: x(s)=4+5 s, y(s)=-7-11 s, z(s)=-2$
$2.13 \phi=0^{\circ}$
$2.14 d(A, p)=7$
$2.15 p$ and q are skew lines with shortest distance $d(p, q)=\sqrt{14}$
$2.16 \phi: 23 x+5 y-11 z+15=0$
$2.17 \alpha=45^{\circ}$

Quadrics

$2.18 \kappa:(x-3)^{2}+y^{2}+\left(z+2\left({ }^{2}=4\right.\right.$
$2.19 \omega: y^{2}+z^{2}=9$
$2.20 \tau_{1}: x-y+2 z-3=0, \tau_{2}:-x+y-2 z+15=0$
2.21 with plane $y=2$: curve is parabola $z=4 x^{2}-36$
with plane $z=1$: curve is hyperbola $4 x^{2}-y^{2}=1$
with plane $z=0$: curves are two intersecting lines $y=2 x$ and $y=-2 x$
$2.22 R=[8,-6,9]$ and $Q=[-2,4,-1]$
2.23 line lies on the quadric
2.24 it is an oblate spheroid with centre $S=[-2,1,-1]$ and axes $a=b=2, c=1$
2.25 it is a point $[1,2,-1]$
2.26 it is a one-sheeted hyperboloid of revolution with centre $S=[2,-3,-1]$ and axes $a=c=1, b=2$
2.27 it is a two-sheeted hyperboloid of revolution with centre $S=[2,3,1]$ and axes $a=b=c=1$
2.28 it is an elliptic cone with vertex $V=[0,0,1]$ and axis of revolution parallel to z-axis
2.29 it is a hyperbolic cylinder with centre $S=[2,-1,0]$ and axes $a=b=\sqrt{3}$ and axis of revolution parallel to z-axis
2.30 it is a paraboloid of revolution with vertex $V=[3,-2,2]$ and parameter $p=1 / 2$ and axis of revolution parallel to z-axis
2.31 it is a hyperbolic paraboloid with vertex $V=[1,0,3]$ and axis parallel to z-axis
2.32 two planes $\rho: y=x$ and $\phi: y=-x-1$

Regions in E_{3} :

2.33 border surfaces are: paraboloid of revolution and one half of cone of revolution they intersect in circle $x^{2}+y^{2}=1$ section with plane $z=0$ are circle $x^{2}+y^{2}=2$ and point $[0,0,0]$
section with plane $z=2$ are point $[0,0,2]$ and circle $x^{2}+y^{2}=4$
2.34 border surfaces are paraboloid of revolution (with vertex $V=[0,0,0)$ and z-axis as an axis of revolution) and cone of revolution (with vertex $V=[0,0,0]$ and z-axis as an axis of revolution)
they intersect in circle $x^{2}+y^{2}=9$ and in origin
sections with plane $(x y)$ and $(y z)$ are same curves: two intersecting lines and parabola
2.35 border surfaces are planes
sections with planes $(x y)$ and $(y z)$ are lines
2.36 border surfaces are planes
sections with planes ($x y$) and ($y z$) are lines
2.37 border surfaces are one half of cone of revolution and sphere curve of intersection is circle $x^{2}+y^{2}=\frac{1}{2}$ sections with planes $(x y)$ and $(y z)$ are

