2 Technical isometry

■ Exercise 2.1. In technical isometry, construct the planar figure given by its orthogonal projection. Point B lies at origin O. The figure lies
a) in the plane $(x, y), A \in x$, choose solution for $x_{A}>0$ and $y_{C}>0$,
b) in the plane $(x, z), A \in z$, choose solution for $z_{A}>0$ and $x_{C}>0$,
c) in the plane $(y, z), A \in y$, choose solution for $y_{A}>0$ and $z_{C}>0$.

Exercise 2.2. In technical isometry, construct the regular hexagonal prism given by its orthogonal projections in scale 1:2. Measure all dimensions you need. Indicate the visibility.

■ Exercise 2.3. In technical isometry, construct the object given by its orthogonal projections in scale 1:2. Measure all dimensions you need. Indicate the visibility.

■ Exercise 2.4. In technical isometry, construct the object given by its orthogonal projections in scale 1:2. Measure all dimensions you need. Indicate the visibility.

■ Exercise 2.5. In technical isometry, construct the object given by its orthogonal projections in scale 1:2. Measure all dimensions you need. Indicate the visibility.

- Exercise 2.6. In technical isometry, construct the object given by its orthogonal projections in scale 1:2. Measure all dimensions you need. Indicate the visibility.

- Exercise 2.7. In technical isometry, construct the rotary object (hemisphere and cylinder of revolution) given by its orthogonal projection in scale 1:1. Measure all dimensions you need. Indicate the visibility. Centre A of the hemisphere lies at origin O, the axis of revolution is identical with
a) x-axix, choose solution for $x_{B}<0$,
b) z-axis, choose solution for $z_{B}<0$,
c) y-axis, choose solution for $y_{B}>0$.

a)

b)

c)

3 Planar kinematic geometry

3.1 Motion given by trajectories and envelopes

■ Exercise 3.1. Motion is given by trajectory τ^{A} of point A and trajectory τ^{B} of point B. Construct at least three new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines.

- Exercise 3.2. Motion is given by trajectory τ^{A} of point A and envelope (b) of straight line b. Construct at least three new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines.
Consider the continuous part of trajectory τ^{A} only.

■ Exercise 3.3. Motion is given by trajectory τ^{A} of point A and envelope (b) of straight line b. Construct at least three new positions of point C. Construct tangent lines to he trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines.
Consider the continuous part of trajectory τ^{A} only.

- Exercise 3.4. Motion is given by envelope (a) of straight line a and envelope (b) of straight line b. Construct at least three new positions of point M. Construct tangent lines to the trajectory τ^{M} at each position. Sketch the part of trajectory τ^{M} determined by all positions of point M and the corresponding tangent lines.
Consider the continuous part of envelope (a) only.

- Exercise 3.5. Motion is given by envelope (a) of straight line a and envelope (b) of straight line b. Construct at least three new positions of point M. Construct tangent lines to the trajectory τ^{M} at each position. Sketch the part of trajectory τ^{M} determined by all positions of point M and the corresponding tangent lines.
- Exercise 3.6. Motion is given by trajectory τ^{A} of point A and trajectory τ^{B} of point B. Construct at least three new positions of circle k. Construct point of contact between the circle and its envelope (k) at each position. Sketch the part of envelope (k) determined by all positions of circle k and the corresponding points of contact.
Consider the continuous parts of both trajectories only.

■ Exercise 3.7. Motion is given by trajectory τ^{A} of point A and trajectory τ^{B} of point B. Construct at least three new positions of straight line $A B$. Construct point of contact between straight line $A B$ and its envelope $(A B)$ at each position. Sketch the part of envelope $(A B)$ determined by all positions of straight line $A B$ and the corresponding points of contact.
Consider the continuous parts of both trajectories only.

- Exercise 3.8. Motion is given by envelope (a) of straight line a and envelope (b) of straight line b. Construct at least three new positions of straight line m. Construct point of contact between straight line m and its envelope (m) at each position. Sketch the part of envelope (m) determined by all positions of straight line m and the corresponding points of contact.

- Exercise 3.9. Motion is given by envelope (a) of straight line a and envelope (b) of straight line b. Construct at least three new positions of circle k. Construct point of contact between circle k and its envelope (k) at each position. Sketch the part of envelope (k) determined by all positions of circle k and the corresponding points of contact.
- Exercise 3.10. Motion is given by trajectory τ^{A} of point A and envelope (b) of straigh line b. Construct at least three new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines
Consider the continuous parts of trajectory τ^{A} only

■ Exercise 3.11. Motion is given by trajectory τ^{A} of point A and envelope (b) of straight line b. Construct at least three new positions of straight line c. Construct point of contact between the line and its envelope (c) at each position. Sketch the part of envelope (c) determined by all positions of straight line c and the corresponding points of contact.
Construct the corresponding part of fixed centrode p.
Construct the corresponding part of moving centrode h^{0} at the given instant.
Consider the continuous parts of trajectory τ^{A} only.

■ Exercise 3.12. Motion is given by trajectory τ^{A} of point A and envelope (b) of straight line b. Construct at least three new positions of straight line c. Construct point of contact between the line and its envelope (c) at each position. Sketch the part of envelope (c) determined by all positions of straight line c and the corresponding points of contact.
Consider the continuous parts of trajectory τ^{A} only.

■ Exercise 3.13. Motion is given by trajectory τ^{A} of point A and envelope (b) of straight line b. Consturct at least three new positions of circle k. Construct point of contact between circle k and its envelope (k) at each position. Sketch the part of envelope (k) determined by all positions of circle k and the corresponding points of contact
Construct the corresponding part of fixed centrode p
Construct the corresponding part of moving centrode h^{0} at the given instant.
Consider the continuous part of trajectory τ^{A} only.

3.2 Cyclic motion

- Exercise 3.14. Motion is given by fixed centrode p and moving centrode h.
a) Construct a sufficient number of new positions of point A. Construct tangent lines to the trajectory τ^{A} at each position. Sketch the part of trajectory τ^{A} determined by all positipns of point A and the corresponding tangent lines.
b) Construct point of contact between line m and its envelope (m) at eqch position. Sketch the part of envelope (m) determined by all positions of straight line m and the

- Exercise 3.15. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point A. Construct tangent lines to the trajectory τ^{A} at each position. Sketch the part of trajectory τ^{A} determined by all positions of point A and the corresponding tangent lines.

■ Exercise 3.16. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of straight line m. Construct point of contact between line m and its envelope (m) at each position. Sketch the part of envelope (m) determined by all positions of straight line m and the corresponding points of contact.
Consider the continuous part of fixed centrode p only.

- Exercise 3.17. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of points A and B. Construct tangent lines to the trajectories τ^{A} and τ^{B} at each position. Sketch the part of trajectories τ^{A} and τ^{B} determined by all positions of points A and B and the corresponding tangent lines. Consider the continuous part of fixed centrode p only.

■ Exercise 3.18. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of circle k. Construct point of contact between the circle and its envelope (k) at each position. Sketch the part of envelope (k) determined by all positions of circle k and the corresponding points of contact.
Consider the continuous part of fixed centrode p only.

- Exercise 3.19. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of points C and the corresponding tangent lines,
Consider the continuous part of fixed centrode p only.
- Exercise 3.20. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of straight line m. Construct point of contact between the line and its envelope (m) at each position. Sketch the part of envelope (m) determined by all positions of straight line m and the corresponding points of contact.
Consider the continuous part of fixed centrode p only.

- Exercise 3.21. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of points C and the corresponding tangent lines.

■ Exercise 3.22. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of straight line $A B$. Construct point of contact between the line and its envelope $(A B)$ at each position. Sketch the part of envelope $(A B)$ determined by all positions of straight line $A B$ and the corresponding points of contact.

- Exercise 3.23. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point A. Construct tangent lines to the trajectory τ^{A} at each position. Sketch the part of trajectory τ^{A} determined by all positions of point A and the corresponding tangent lines.
Consider the continuous part of fixed centrode p only.

■ Exercise 3.24. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point B. Construct tangent lines to the trajectory τ^{B} at each position. Sketch the part of trajectory τ^{B} determined by all positions of point B and the corresponding tangent lines.

- Exercise 3.25. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines.
- Exercise 3.26. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point A. Construct tangent lines to the trajectory τ^{A} at each position. Sketch the part of trajectory τ^{A} determined by all positions of point A and the corresponding tangent lines.

- Exercise 3.27. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point B. Construct tangent lines to the trajectory τ^{B} at each position. Sketch the part of trajectory τ^{B} determined by all positions of point B and the corresponding tangent lines.
- Exercise 3.28. Motion is given by fixed centrode p and moving centrode h. Construct a sufficient number of new positions of point C. Construct tangent lines to the trajectory τ^{C} at each position. Sketch the part of trajectory τ^{C} determined by all positions of point C and the corresponding tangent lines.

4 Surfaces of revolution

■ Exercise 4.1. Surface of revolution (axis o, principal half-meridian m) is given. Using Monge projection, construct the top view and the front view of the surface.

■ Exercise 4.2. Surface of revolution (axis o, principal half-meridian m) is given. Using Monge projection, construct the top view and the front view of the surface.
Monge projection, construct the top view and the front view of the surface.

$$
-2
$$

■ Exercise 4.3. Surface of revolution (axis o, generating curve k) is given. Using Monge projection,
a) construct tangent plane τ at point $A \in k$,
b) construct tangent plane τ and normal line n at point $A \in k$

- Exercise 4.4. Surface of revolution (axis o, principal half-meridian m) is given. Using Monge projection, construct a missing view of point B. Construct normal line n at point B.

Exercise 4.5. Surface of revolution (axis o, generating curve k) is given. Using Monge projection, construct its principal half-meridian m in the given half-plane ρ.

อ

■ Exercise 4.6. Surface of revolution (axis o, principal half-meridian m) is given. Using Monge projection, construct intersection curve p of the surface and the given plane σ. Construct normal line n at point $M \in p, z_{M}=10$.

ค

- Exercise 4.7. Surface of revolution (axis o, generating straight line segment $P Q$) is given. Using Monge projection
a) construct intersection curve p of the surface of revolution and the given plane σ,
b) construct the top view and the front view of the surface, write the name of the surface and its equation.

ค

- Exercise 4.8. Using Monge projection, construct intersection curve p of the torus and the given plane σ. Indicate the visibility. Construct normal line n at point of intersection $M \in p, z_{M}=35$.

$x_{1,2}$

- Exercise 4.9. Using Monge projection, construct intersection curve p of the surface of revolution (axis o, principal half-meridian m - circle with centre at point S) and the given plane σ. Indicate the visibility. Write the name of the surface of revolution.

- Exercise 4.10. Surface of revolution (axis o, principal half-meridian m - circular arc with centre at point S) is given. Using Monge projection, construct the top view and the front view of the surface. Construct intersection curve p of the surface of revolution and the given plane σ. Construct normal line n at point of intersection $M \in p, z_{M}=40$.

4.1 Intersection of surfaces of revolution

- Exercise 4.11. Ellipsoid of revolution (axis o) and cylinder of revolution (axis o^{\prime}) are given. Using Monge projection, construct intersection curve q of these two surfaces.

■ Exercise 4.12. Cylinder of revolution (axis o) and sphere (centre S) are given. Using Monge projection, construct intersection curve q of these two surfaces. Construct normal lines of both surfaces at point $M \in q, M \in \alpha$.

- Exercise 4.13. Surface of revolution (axis o) and cone of revolution (axis o) are given. Using Monge projection, construct intersection curve q of these two surfaces. Indicate the visibility. Construct normal lines of both surfaces at point $M \in q, z_{M}=15$

■ Exercise 4.14. Truncated cone of revolution (axis o) and cylinder of revolution (axis o') are given. Using Monge projection, construct intersection curve q of these two surfaces. Indicate the visibility. Construct normal lines of both surfaces at point $M \in q, M \in \alpha$.

- Exercise 4.15. Paraboloid of revolution (axis o) and cylinder of revolution (axis o) are given. Using Monge projection, construct intersection curve q of these two surfaces Indicate the visibility. Construct normal lines of both surfaces at point $M \in q, z_{M}=30$ construct normal lines of both surfaces.

- Exercise 4.16. Cylinder of revolution (axis o) and cone of revolution (axis o') are given. Using Monge projection, construct intersection curve q of these two surfaces. Indicate the visibility.

■ Exercise 4.17. Construct front view of intersection curve q of two surfaces of revolution a) Axial section of cone of revolution (axis o) and axial section of cylinder of revolution (axis o^{\prime}) are given.
b) Axial sections of two cylinders of revolution (axes o and o^{\prime}) are given.

- Exercise 4.18. Two truncated cones of revolution (axes o and o) are given. Using Monge projection, construct intersection curve q of these surfaces. Indicate the visibility.

5 Helicoidal surfaces

5.1 Helix

- Exercise 5.1. Considering the given cylinder of revolution (axis o) draw a) righthanded, b) left-handed helix generated by screw motion of point A with lead $v=120 \mathrm{~mm}$. Use Monge projection.

■ Exercise 5.2. Helix (B, o, v_{0}, a) right-handed, b) left-handed) is given. Using Monge projection, construct tangent line to the helix at its generating point B.

■ Exercise 5.3. Helix $\left(A, o, v_{0}\right.$, right-handed) is given. Using Monge projection, construct intersection R of the helix and the given plane σ. Construct tangent line to the helix at point R.
a)

5.3 b)

- Exercise 5.4. Helix (B, o, v_{0}, left-handed) is given. Using Monge projection, construct intersection R of the helix and the given plane σ. Construct tangent line to the helix at point B.
a)

5.4 b)

5.2 Helicoidal surfaces

■ Exercise 5.5. Helicoidal surface (k, o, v_{0}, a) right-handed, b) left-handed) is given. Using Monge projection, construct tangent plane τ at point $A \in k$.

- Exercise 5.6. Helicoidal surface (k, o, v_{0}, a) left-handed, b) right-handed) is given. Using Monge projection, construct the intersection of the surface and the given plane ρ.

■ Exercise 5.7. Helicoidal surface (k, o, v_{0}, left-handed) is given. Using Monge projection, construct tangent plane τ of the surface at point B. Construct the curve of intersection m of the surface and the given plane ρ (principal half-meridian).

๔

■ Exercise 5.8. Helicoidal surface (k, o, v_{0}, right-handed) is given. Using Monge projection, construct the curve of intersection n of the surface and the given plane σ (normal section).

- Exercise 5.9. Serpentine of Archimedes is given by centre S, radius $r=30 \mathrm{~mm}$ and left-handed screw motion $\left(o, v_{0}\right)$. Using Monge projection, construct the generating circle. Construct the normal section n of the helicoidal surface by the given plane σ.

■ Exercise 5.10. Helicoidal surface (k, o, v_{0}, right-handed) is given.
a) Using Monge projection, construct tangent plane τ of the surface at point B Construct the normal section c of the surface and the given plane σ.
b) Using Monge projection, construct principal half-meridian of the surface in the given plane ρ.

อ

6 Developable surfaces

■ Exercise 6.1. Develop the part of cylinder of nevolution between its bate k and ellipse
$e \subset \rho$. Use Monge projection.

- Exercise 6.2. Develop the part of cone of revolution (V, k) between its base k and ellipse $l \subset \rho$. Use Monge projection. V_{2}

■ Exercise 6.3. Degenerated intersection of two cylinders of revolution is given. Develop the dotted part of the cylinder of revolution.

■ Exercise 6.4. Degenerated intersection of two cylinders of revolution is given. Develop the dotted part of the cylinder of revolution

■ Exercise 6.5. Degenerated intersection of cylinder of revolution and cone of revolution is given. Develop the dotted part of the cone of revolution.

■ Exercise 6.6. Degenerated intersection of cylinder of revolution and cone of revolution is given. Develop the dotted part of the cone of revolution. k_{2}

