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Introduction

This book has been written as a textbook for the Constructive Geometry course (first semester,
Faculty of Mechanical Engineering, Czech Technical University in Prague), but it can be also
used for self-study.

The textbook is organized as follows. Chapter 1 Geometrical figures brings the overview of
differential geometry of points, curves, surfaces and solids. This chapter is very important for
understanding many terms used in the textbook but it is not the matter of the Constructive
Geometry course. Chapter 2 Planar kinematic geometry is focused on investigation and con-
structive solution of trajectories generated by planar motion of points and envelopes generated
by planar motion of curves. A brief overview of projection methods enabling to solve three-
dimensional problems graphically in two dimensions is given in chapter 3 Methods of projection.
Chapter 4 Analytic geometry gives a brief overview of basic vector operations and analytic
representations of straight line, conic sections, plane and quadratic surfaces. Chapters 5 to 8
are devoted to geometrical properties of surfaces in engineering practice. In particular, chap-
ter 5 Surfaces of revolution and their intersections is focused on surfaces generated by revolution
of a curve about axis and chapter 6 Helicoidal surfaces on surfaces generated by screw motion of
a curve. Surfaces generated by a motion of another surface are described in chapter 7 Envelope
surfaces. In chapter 8 Developable surfaces, the graphical solution of construction of planar fig-
ure into which is possible to unfold or unroll special types of ruled surfaces is presented. A list
of basis literature in which more information about the topics described in this textbook can be
found in Bibliography.

The theoretical part of each individual chapter is presented together with step-by-step solved
example problems so that the construction is easy to follow. To demonstrate important geomet-
rical properties of the studied objects, pictorial drawings are provided whenever possible.

I would like to thank all colleagues who contributed to this textbook by providing useful
advice, by reading chapters and suggesting changes, and by finding and correcting errors.

Prague, September 2021 Ivana Linkeová
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Chapter 1

Geometrical figures

In this chapter, the most important terms, definitions and fundamental properties of points,
curves, surfaces and solids are given. All these figures are represented by n-variate vector
function, where n is the dimension of the figure: a point (n “ 0), a curve (n “ 1), a surface
pn “ 2q and a solid pn “ 3q.

1.1 Points

In Euclidean three-dimensional space E3, the Cartesian coordinate system pO, x, y, zq is given.
The coordinate axes x, y and z are mutually perpendicular straight lines with common point at
the origin O. Length units on all three axes are equal given by the magnitude of coordinate vec-
tors i “ p1, 0, 0q, j “ p0, 1, 0q and k “ p0, 0, 1q. Similarly, Cartesian coordinate system pO, x, yq in
Euclidean two-dimensional space E2 can be defined. Here, the magnitude of coordinate vectors
i “ p1, 0q and j “ p0, 1q determine length units on two perpendicular axes x and y.

Point A “ rxA, yAs in E2 is unambiguously given by a pair of ordered real numbers xA and yA
(Cartesian coordinates) which determine the oriented distance of point A from coordinate axes
y and x in the given order, see fig. 1.1 a). Point A “ rxA, yA, zAs in E3 is unambiguously given
by a triplet of ordered real numbers xA, yA and zA (Cartesian coordinates) which determine the
oriented distance of point A from coordinate plane py, zq, px, zq and px, yq in the given order,
see fig. 1.1 b).
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Figure 1.1: Point A in Euclidean two- and three-dimensional space
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Considering a point as a function value of a vector function, it can be represented by radius
vector with tail at the origin O of coordinate system and head at the point A, fig. 1.1. In the
following analytic representations in this textbook, all points are considered in vector form and
denoted as vectors, e.g. A “ pxA, yAq “ p1, 2q or A “ pxA, yA, zAq “ p1, 2, 3q. In all graphical
representations in this textbook, points are drawn by symbol ˝ and denoted by capital letters,
e.g. A,B,C . . ..

1.2 Curves

From physical point of view, a curve is considered to be a trajectory of a point moving in
dependence on time. From geometrical point of view, a curve is characterized by one-parametric
sequence of points (i.e. their radius vectors in vector representation) in two- or three-dimensional
space.

� Definition 1.1 – Curve. A curve is any connected non-empty subset p in R2 or R3, which
is a continuous mapping of a real interval I Ă R. If n “ 2, the curve is called planar. If
n “ 3, the curve is called spatial.
Analytic representation of planar or spatial curve is given by vector equation

Pptq “ pxptq, yptqq, t P I (1.1)

or

Pptq “ pxptq, yptq, zptqq, t P I, (1.2)

where Pptq is vector function of one real variable. This function is defined, continuous and at
least once differentiable on the interval I. Parametric equations of a planar or a spatial curve
are obtained by itemizing the coordinate functions of the curve given by vector equation (1.1)
or (1.2)

x “xptq,

y “yptq, t P I (1.3)

or

x “xptq,

y “yptq,

z “zptq, t P I. (1.4)

A curve defined by eq. (1.3) or eq. (1.4) is referred to as a curve defined parametrically.
Equations (1.3) or (1.4) are referred to as a parametric expression or parametrization of
a curve. l

In the following definitions, spatial curve is considered only. The modifications necessary to
obtain the definitions related to planar curve are obvious.

� Definition 1.2 – Curve point. A curve point is the function value of vector function
eq. (1.2) for t “ α, α P ra, bs

Ppαq “ pxpαq, ypαq, zpαqq .

The parameter value t “ α that unambiguously determines the position of the point on the
curve is called parametric (curvilinear) coordinate of a curve point. l



The orientation of the curve is defined by orientation of its vector function. The curvilinear
coordinate of the start curve point is equal to a, the curvilinear coordinate of the terminal curve
point is equal to b. The start and terminal curve points are called the endpoints of the curve.

� Definition 1.3 – Regular and singular curve point. Curve point Ppαq, α P ra, bs is
called a regular curve point if the vector P1pαq “ px1pαq, y1pαq, z1pαqq is a non-zero vector
and only one value of parameter t “ α, α P pa, bq corresponds to this point. Every other
curve point is called a singular curve point. The coinciding endpoints of the curve are not
considered singular points. l

� Definition 1.4 – Tangent vector, binormal vector and principal normal vector at
curve point. The first derivative of vector function (1.2)

P1ptq “

ˆ

dxptq

dt
,

dyptq

dt
,

dzptq

dt

˙

“
`

x1ptq, y1ptq, z1ptq
˘

, t P ra, bs

is a vector function that expresses for α P ra, bs a tangent vector of a curve Pptq at its regular
point Ppαq

P1pαq “
`

x1pαq, y1pαq, z1pαq
˘

.

Orientation of tangent vector P1ptq is identical to the orientation of curve Pptq. The unit
tangent vector tpαq at regular point Ppαq of curve Pptq is given by

tpαq “
P1pαq

||P1pαq||
. (1.5)

The straight line given by point Ppαq and direction vector tpαq is the tangent line tα of curve
Pptq at its point Ppαq.
The binormal vector is obtained as a cross product (see chapter 4) of the first and second
derivatives of vector function (1.2) at its regular and non-inflection (see def. 1.14) point Ppαq,
α P ra, bs. The unit binormal vector bpαq is given by

bpαq “
P1pαq ˆP2pαq

||P1pαq ˆP2pαq||
.

The straight line given by point Ppαq and direction vector bpαq is the binormal line bα of
curve Pptq at its non-inflection point Ppαq.
Cross product of binormal vector and tangent vector of curve Pptq, t P ra, bs at point Ppαq,
α P ra, bs is called the principal normal vector. The unit principal normal vector npαq is given
by

npαq “ bpαq ˆ tpαq.

The straight line given by point Ppαq and direction vector npαq is the principal normal line
nα of curve Pptq at its point Ppαq. l

A planar curve has one tangent line and one normal line at its regular point, see fig. 1.2 a).

� Definition 1.5 – Double (node) and multiple curve point. If there exist real numbers

α1, α2 P pa, bq, α1 ‰ α2,

for which Ppα1q “ Ppα2q, i.e. the curve point given by curvilinear coordinate α1 and curve
point given by curvilinear coordinate α2 coincide, the point Ppα1q “ Ppα2q is called the
double curve point or curve node. If there exist k ą 2 such numbers from the interval I, the
point is called the k-multiple curve point. l



Double (multiple) curve point is a point where a curve intersects itself. The curve has two
(k) distinct tangent lines at its double (multiple) point, see fig. 1.2 b).

� Definition 1.6 – Cuspidal curve point. The curve point, in which the tangent vector
is zero vector and at least one of coordinate functions x1ptq, y1ptq or z1ptq of tangent vector
changes its sign is called a cuspidal curve point or a cusp. l

A curve has ”sharp corner” at its cuspidal point, see fig. 1.2 c).

� Definition 1.7 – Vertex of the curve. The curve point, in which the normal line is
identical to the axis of symmetry of a curve is called the vertex of the curve. l

An example of vertex of a curve is shown in fig. 1.2 d).

b) c) d) e)
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Figure 1.2: Classification of curve points

The derivatives of vector function of a curve and their function values are very important
for shape modelling and curves joining. In the following in this textbook, the term k-th curve
derivative means k-th derivative of vector function analytically representing the curve Pptq,
t P ra, bs. The first three curve derivatives are denoted with P1ptq, P2ptq and P3ptq. The
function value of k-th curve derivative for parameter value t “ α, α P ra, bs is referred to as
vector of k-th curve derivative.

� Definition 1.8 – Frenet moving trihedron of a curve. The normalized orthogonal
right-handed (with positive orientation) trihedron created at a regular point Ppαq, α P ra, bs
of curve Pptq, t P ra, bs by unit tangent vector tpαq, unit principal normal vector npαq and
unit binormal vector bpαq is called Frenet moving trihedron of a curve. l

Frenet moving trihedron of a curve is used to describe intrinsic (geometric) properties of the
curve in the neighbourhood of its regular point.

� Definition 1.9 – Normal, rectification and osculation plane. The plane given at
a regular point Ppαq, α P ra, bs of curve Pptq, t P ra, bs by principal normal line and binormal
line is called normal plane να. The plane given at a regular point Ppαq, α P ra, bs of curve
Pptq, t P ra, bs by binormal line and tangent line is called rectification plane ρα. The plane
given at a regular point Ppαq, α P ra, bs of curve Pptq, t P ra, bs by principal normal line and
tangent line is called osculation plane ωα. l

Normal plane is perpendicular to the tangent line, rectification plane is perpendicular to the
principal normal line and osculation plane is perpendicular to the binormal line.

Example of Frenet moving trihedron and normal, rectification and osculation plane at a point
on a spatial curve p : Pptq is given in fig. 1.3. Note that in graphical representations in this
textbook, a slightly simplified denotation of drawn geometrical figures is used.
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Denotation of geometrical figures
in graphical representation

p . . . curve Pptq

A . . . point on curve Ppαq

xA, yA, zA . . . Cartesian coordinates xpαq, ypαq, ypαq

t . . . tangent line tα

n . . . normal line nα

b . . . binormal line bα

ν . . . normal plane να

ρ . . . rectification plane ρα

ω . . . osculation plane ωα

Figure 1.3: Frenet moving trihedron
and normal, rectification and osculation plane of a curve

� Definition 1.10 – The first curvature – flection. The first curvature – flection 1kpαq
at a regular point Ppαq, α P ra, bs of curve Pptq, t P ra, bs is a non-negative number expressed
by

1kpαq “
||P1pαq ˆP2pαq||

||P1pαq||3
, (1.6)

where ||P1pαq ˆP2pαq|| is the magnitude of cross product of the first and second derivatives
of the curve and ||P1pαq|| is the magnitude of tangent vector of the curve at point Ppαq. l

The first curvature of the curve corresponds to elevation of the curve from its tangent line.
If 1kptq “ 0, t P ra, bs, the curve Pptq is a straight line.

� Definition 1.11 – Radius of the first curvature. The number

rpαq “
1

1kpαq

is called radius of the first curvature at point Ppαq. l

� Definition 1.12 – Centre of the first curvature. The point

Spαq “ Ppαq ` rpαqnpαq

lying in osculation plane ωα on the halfline given by point Ppαq and direction vector npαq at
the distance rpαq from Ppαq is called centre of the first curvature at point Ppαq. l

� Definition 1.13 – Osculation circle. The circle with the centre at point Spαq and radius
rpαq is called osculation circle at point Ppαq. l

� Definition 1.14 – Inflection curve point. Curve point Ppαq, α P ra, bs is called inflection
curve point or point of inflection if the curvature 1kpαq at this point is equal to zero and unit
tangent vector is continuous. l

The tangent line crosses the curve at its inflection point, see in fig. 1.2 e).



� Definition 1.15 – The second curvature – torsion. The second curvature – torsion
2kpαq at a non-inflection point Ppαq, α P ra, bs of curve Pptq, t P ra, bs is a real number
expressed by

2kpαq “
rP1pαqP2pαqP3pαqs

||P1pαq ˆP2pαq||2
, (1.7)

where rP1pαqP2pαqP3pαqs is scalar triple product (see chapter 4) of vectors of the first, second
and third curve derivatives at point Ppαq. l

The second curvature corresponds to elevation of the curve from its osculation plane. If
2kptq “ 0, t P ra, bs, the curve Pptq is a planar curve.

� Definition 1.16 – Contact of two curves. Two curves have a contact at a common
point, when they have a common tangent line at this point. l

A contact of a curve and its tangent line is drawn in fig. 1.4 a), contact of a curve and its
osculation circle is drawn in fig. 1.4 b) and contact of two general curves is shown in fig. 1.4 c).

b) c)

n ttt

a)

Figure 1.4: Contact of two curves

� Definition 1.17 – Angle of two curves. Angle of two curves is formed by tangent lines
to these curves at their common point. l

1.3 Surfaces

� Definition 1.18 – Surface. A surface is any connected non-empty subset σ in R3, which
is a continuous mapping of a real region I Ă R2. Analytic representation of a surface is given
by vector equation

Ppu, vq “ pxpu, vq, ypu, vq, zpu, vqq, pu, vq P I, (1.8)

where Ppu, vq is vector function of two real variables. This function is defined, continuous and
at least once differentiable on the region I. Parametric equations of the surface are obtained
by itemizing the coordinate functions of the surface given by vector equation (1.8)

x “ xpu, vq,

y “ ypu, vq,

z “ zpu, vq, pu, vq P I. (1.9)

A surface defined by (1.9) is referred to as a surface defined parametrically. Equations (1.9)
are referred to as a parametric expression or parametrization of the surface.



� Definition 1.19 – Surface point. A surface point is the function value of vector function
(1.8) for pα, βq P I

Ppα, βq “ pxpα, βq, ypα, βq, zpα, βqq.

The parameter values u “ α and v “ β that unambiguously define the position of a point on
the surface are called parametric (curvilinear) coordinates of surface point. l

For a;constant value of one variable in a vector function of two variables, we obtain vec-
tor function of one variable representing a curve located on the surface. This curve is called
parametric curve of the surface.

� Definition 1.20 – Parametric curves of a surface. Let Ppu, vq, pu, vq P I be a vector
equation of a surface and α and β parameter values from I. Then the curve

Ppu, βq “ pxpu, βq, ypu, βq, zpu, βqq

is called parametric u-curve of the surface and the curve

Ppα, vq “ pxpα, vq, ypα, vq, zpα, vqq

is called parametric v-curve of the surface. l

On a surface, parametric curves form two systems of curves, where each curve from one
system intersects all curves from the other system. Two parametric curves each from different
systems intersect at a common point located on the surface. Curvilinear coordinates of this
point correspond to constant values of parameters u and v, see fig. 1.5 a).

� Definition 1.21 – Tangent vectors of parametric curves. The first partial derivative

Pupu, vq “
BPpu, vq

Bu
“ pxupu, vq, yupu, vq, zupu, vqq, pu, vq P I

is a vector function which determines for pα, βq P I tangent vector of parametric u-curve
Pupu, vq at point Ppα, βq

Pupα, βq “
BPpu, vq

Bu

ˇ

ˇ

ˇ

ˇ

u“α,v“β

“ pxupα, βq, yupα, βq, zupα, βqq.

The first partial derivative

Pvpu, vq “
BPpu, vq

Bv
“ pxvpu, vq, yvpu, vq, zvpu, vqq, pu, vq P I

is a vector function which determines for pα, βq P I tangent vector of parametric v-curve
Pvpu, vq at point Ppα, βq

Pvpα, βq “
BPpu, vq

Bv

ˇ

ˇ

ˇ

ˇ

u“α,v“β

“ pxvpα, βq, yvpα, βq, zvpα, βqq.

Orientation of tangent vectors of parametric curves is identical to orientation of the cor-
responding parametric curve. The straight line given by point Ppα, βq and tangent vector
Pupα, βq is tangent line of parametric u-curve at point Ppα, βq. The straight line given by
point Ppα, βq and tangent vector Pvpα, βq is tangent line of parametric v-curve at point
Ppα, βq. l



� Definition 1.22 – Regular and singular surface point. Surface point Ppα, βq,
pα, βq P I is called regular surface point, if the vectors Pupα, βq and Pvpα, βq are non-zero,
not parallel, and only one pair of parameter values pu, vq “ pα, βq, pα, βq P I corresponds to
this point. Every other surface point is called a singular surface point.

� Definition 1.23 – Tangent plane at surface point. Plane τpα, βq given by regular point
Ppα, βq, pα, βq P I on the surface and tangent vectors of parametric curves Pupα, βq and
Pvpα, βq is called the tangent plane of surface Ppu, vq at point Ppα, βq. The vector

npα, βq “ Pupα, βq ˆPvpα, βq (1.10)

at regular point Ppα, βq on the surface is called normal vector of surface Ppu, vq at point
Ppα, βq. The straight line given by point Ppα, βq and normal vector npα, βq is called normal
line of the surface at point Ppα, βq, see fig. 1.5 b). l
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Denotation of geometrical figures in graphical representation

σ . . . surface Spu, vq k, l . . . curves on surface

A . . . point on surface Ppαq t, s . . . tangent lines to curves on surface

n . . . normal line nα,β τ . . . tangent plane τα,β

Figure 1.5: Parametric curves of a surface,
tangent plane and normal line at point A on a surface

� Definition 1.24 – Twist vector. The second mixed partial derivative of vector function

Puvpu, vq “
B2Ppu, vq

BuBv
“
B2Ppu, vq

BvBu
“

“ pxuvpu, vq, yuvpu, vq, zuvpu, vqq “ pxvupu, vq, yvupu, vq, zvupu, vqq,

pu, vq P I

is a vector function which determines for pα, βq P I twist vector of the surface at point
Ppα, βq. l



Twist vector corresponds to elevation of the surface from its tangent plane.
To describe intrinsic properties of a surface, it is necessary to investigate principal curvature,

Gaussian curvature and mean curvature of the surface.
To understand the term principal curvature of a surface, consider a regular surface point

Ppα, βq, tangent plane τpα, βq and normal line npα, βq at this point. Infinitely many curves
located on the surface pass through point Ppα, βq. Thus, infinitely many tangent lines of these
curves are lying in tangent plane τpα, βq. Each tangent line together with normal line npα, βq
form a plane of normal section of the surface. Intersection of this plane of normal section and
the surface is called a curve of normal section. At point Ppα, βq, each curve of normal section
has the first curvature equal to a certain real number, see eq. (1.6), called a normal curvature.
Directions in which the normal curvature reaches its minimum or maximum are called principal
directions of the surface. The corresponding values of the normal curvature are called principal
curvatures of the surface. We denote the principal curvatures at point Ppα, βq with kminpα, βq
and kmaxpα, βq.

We will use the following convention for the sign of the principal curvature: the principal
curvature is positive if vector

ÝÝÝÝÝÝÝÝÝÝÑ
Ppα, βqSpα, βq and normal vector npα, βq are identically oriented;

the principal curvature is negative if vector
ÝÝÝÝÝÝÝÝÝÝÑ
Ppα, βqSpα, βq and normal vector npα, βq have

opposite orientation. Spα, βq is the centre of osculation circle.

� Definition 1.25 – Gaussian curvature. Gaussian curvature at regular surface point
Ppα, βq is given by

Kpα, βq “ kminpα, βq ¨ kmaxpα, βq.

l

According to the Gaussian curvature, a regular surface point is referred to as an elliptic,
parabolic or hyperbolic point. At elliptic point, the Gaussian curvature is positive and the tangent
plane does not contain any other point of the surface in the neighbourhood of this point. At
parabolic point, the Gaussian curvature is equal to zero and the tangent plane contacts the
surface along a curve. At hyperbolic point, the Gaussian surface is negative and the tangent
plane intersects the surface in the intersection curve.

Gaussian surface of a plane is equal to zero. Surfaces with zero Gaussian curvature are
developable into a plane.

� Definition 1.26 – Mean curvature. Mean curvature at regular point Ppα, βq of surface
is given by

Hpα, βq “
kminpα, βq ` kmaxpα, βq

2
.

l

Surfaces with zero mean curvature are called minimal surfaces.

1.4 Solids

� Definition 1.27 – Solid. A solid is any connected non-empty subset κ in R3, which is
a continuous mapping of a connected region I Ă R3. Analytic representation of a solid is
given by vector equation

Ppu, v, tq “
`

xpu, v, tq, ypu, v, tq, zpu, v, tq
˘

, pu, v, tq P I, (1.11)

where Ppu, v, tq is vector function of three real variables. This function is defined, continuous
and at least once differentiable on the region I. l
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Figure 1.6: Solid

Example of a solid is given in fig. 1.6.

� Definition 1.28 – Solid point. A solid point is the function value of vector function (1.11)
for pα, β, γq P I

Ppα, β, γq “
`

xpα, β, γq, ypα, β, γq, zpα, β, γq
˘

.

The parameter values u “ α, v “ β, t “ γ that unambiguously define the position of a point
located in the solid, are called parametric (curvilinear) coordinates of the solid point. l

For constant value of one variable in vector function of three variables, we obtain vector
function of two variables representing a surface located in the solid. This surface is called
parametric surface of the solid.

� Definition 1.29 – Parametric surfaces of a solid. Let Ppu, v, tq, pu, v, tq P I be a vector
equation of a solid and α, β and γ parameter values from I. Then the surface

Ppu, v, γq “
`

xpu, v, γq, ypu, v, γq, zpu, v, γq
˘

is called uv-parametric surface of the solid Ppu, v, tq, the surface

Ppu, β, tq “
`

xpu, β, tq, ypu, β, tq, zpu, β, tq
˘

is called ut-parametric surface of the solid Ppu, v, tq and the surface

Ppα, v, tq “
`

xpα, v, tq, ypα, v, tq, zpα, v, tq
˘

is called vt-parametric surface of the solid Ppu, v, tq. l

Parametric surfaces form three systems of surfaces located in the solid, see example in
fig. 1.7. Each parametric surface from one system intersects all parametric surfaces from the
other two systems. Arbitrary three parametric surfaces (each from one system) are intersecting
at a common solid point.

For constant values of two variables in vector function of three variables, we obtain vector
function of one variable representing a curve located in the solid. This curve is called parametric
curve of the solid.
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Figure 1.7: Parametric surfaces of a solid

� Definition 1.30 – Parametric curves of a solid. Let Ppu, v, tq, pu, v, tq P I be a vector
equation of a solid and α, β and γ are parameter values from I. Then the curve

Ppu, β, γq “
`

xpu, β, γq, ypu, β, γq, zpu, β, γq
˘

is called u-parametric curve of the solid Ppu, v, tq, the curve

Ppα, v, γq “
`

xpα, v, γq, ypα, v, γq, zpα, v, γq
˘

is called v-parametric curve of the solid Ppu, v, tq and the curve

Ppα, β, tq “
`

xpα, β, tq, ypα, β, tq, zpα, β, tq
˘

is called t-parametric curve of the solid Ppu, v, tq. l

Parametric curves form three systems of curves in the solid, see example in fig. 1.8. One
parametric curve from each system passes through each solid point.
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Figure 1.8: Parametric curves of a solid



� Definition 1.31 – Tangent vectors of parametric curves of a solid. The first partial
derivative of vector function (1.11)

Pupu, v, tq “
BPpu, v, tq

Bu
“

`

xupu, v, tq, yupu, v, tq, zupu, v, tq
˘

(1.12)

is a vector function which determines for pα, β, γq P I tangent vector Pupα, β, γq of u-
parametric curve Ppu, β, γq at point Ppα, β, γq of the solid Ppu, v, tq.
The first partial derivative of vector function (1.11)

Pvpu, v, tq “
BPpu, v, tq

Bv
“

`

xvpu, v, tq, yvpu, v, tq, zvpu, v, tq
˘

(1.13)

is a vector function which determines for pα, β, γq P I tangent vector Pvpα, β, γq of v-
parametric curve Ppα, v, γq at point Ppα, β, γq of the solid Ppu, v, tq.
The first partial derivative of vector function (1.11)

Ptpu, v, tq “
BPpu, v, tq

Bt
“

`

xtpu, v, tq, ytpu, v, tq, ztpu, v, tq
˘

(1.14)

is a vector function which determines for pα, β, γq P I tangent vector Ptpα, β, γq of t-
parametric curve Ppα, β, tq at point Ppα, β, γq of the solid Ppu, v, tq.
Orientation of tangent vectors of parametric curves and orientation of parametric curves is
identical.
Point Ppα, β, γq and tangent vector Pupα, β, γq determine tangent line to u-parametric curve
of the solid Ppu, v, tq. Point Ppα, β, γq and tangent vector Pvpα, β, γq determine tangent line
to v-parametric curve of the solid Ppu, v, tq. Point Ppα, β, γq and tangent vector Ptpα, β, γq
determinate tangent line to t-parametric curve of the solid Ppu, v, tq. l

� Definition 1.32 – Tangent plane of parametric surface of a solid. The plane given
by the pair of tangent vectors Pupu, v, tq and Pvpu, v, tq at the regular solid point Ppα, β, γq
is called tangent plane of uv-parametric surface of the solid Ppu, v, tq at point Ppα, β, γq.
The plane given by the pair of tangent vectors Pupu, v, tq and Ptpu, v, tq at the regular solid
point Ppα, β, γq is called tangent plane of ut-parametric surface of the solid Ppu, v, tq at point
Ppα, β, γq. The plane given by the pair of tangent vectors Pvpu, v, tq and Ptpu, v, tq at the
regular solid point Ppα, β, γq is called tangent plane of vt-parametric surface of the solid
Ppu, v, tq at point Ppα, β, γq. l



Chapter 2

Planar kinematic geometry

Planar kinematic geometry studies geometrical properties of curves generated by motion of
moving system in the plane of fixed system. Physical properties such as velocity and acceleration
of the motion are not taken into consideration. In this chapter, only synthetic representation of
all solved problems is given and the following denotation of moving and fixed figures is used.

A,B,C, . . . points (capital letters)

A0, A1, A2, . . . individual positions of moving point A

τA trajectory of point A

tA
0
, tA

1
, tA

2
, . . . tangent line to trajectory τA at individual positions of moving point A

nA
0
, nA

1
, nA

2
, . . . normal line to trajectory τA at individual positions of moving point A

a, b, c, . . . curves (small letters)

a0, a1, a2, . . . individual positions of moving curve a

paq envelope of moving curve a

na
0
, na

1
, na

2
, . . . normal line to moving curve a at individual positions of moving curve a

T a
0
, T a

1
, T a

2
, . . . individual positions of point of contact between the moving curve a and

its envelope paq

ta
0
, ta

1
, ta

2
, . . . tangent line of envelope paq at point of contact T a

0
, T a

1
, T a

2
, . . .

p fixed centrode

h moving centrode

h0, h1, h2, . . . individual positions of moving centrode h

S0, S1, S2, . . . instantaneous centres of rotation on fixed centrode p

Si0, S
i
1, S

i
2, . . . instantaneous centres of rotation on moving centrode hi

Moving system is a set of planar figures subjected to the continuous motion in the plane of
fixed system. The shape of the moving system does not change during the motion. Therefore, all
the individual positions of the moving figures are mutually congruent. Example of this situation
is drawn in fig. 2.1, where moving system is represented by triangle 4ABC and fixed system is
represented by trajectories τA, τB and τC . Thus, the following congruences are valid.

4A0B0C0 – 4A1B1C1 – 4A2B2C2 – . . .
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Figure 2.1: Example of planar motion

There are two types of curves generated by planar motion – trajectories of moving points
and envelopes of moving curves. In the case of trajectory of moving point investigation, it is
necessary to construct the moving point in sufficient number of ordered positions, see positions
A0, A1, . . . , A4 in fig. 2.2 a).
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Figure 2.2: Example of trajectory generated by motion of point A

Obviously, it is possible to associate infinitely many trajectories passing through the sequence
A0, A1, . . . , A4, see fig. 2.2 b). The shape of individual trajectories depends not only on the
positions of moving point but also on the direction of tangent lines to the trajectory, see fig. 2.2 c).
To preserve the readability of the picture, only two of the trajectories and their tangent lines
are drawn here. Different directions of tangent lines determine different shape of the resulting
trajectory. Thus, it is necessary to construct a pair of point and tangent line at each considered
instant of the motion first. Then, it is possible to estimate the shape of the trajectory which
passes through all positions of moving point and follows all tangent lines, see fig. 2.2 d).



Similar situation arises when investigating envelopes of moving curves, see fig. 2.3 a). Here,
the individual positions a0, a1, . . . , a4 of a moving straight line a represent tangent lines to the
generated envelope paq. Again, there are infinitely many envelopes which can be inscribed into
this sequence of tangent lines. Three possible envelopes are shown in fig. 2.3 b). To estimate
the shape of the envelope more precisely, it is necessary to determine points of contact between
the moving curve and its envelope, see fig. 2.3 c). Thus, a pair of point and tangent line has
to be known at each considered instant first. Then, the shape of the envelope can be estimated
and drawn as a curve passing through all points of contact and following the direction of the
moving straight line as is shown in fig. 2.3 d).
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Figure 2.3: Example of envelope generated by motion of straight line a

2.1 Elementary and general planar motion

To solve the problem of construction of a pair of point and tangent line at arbitrary instant of
general planar motion, elementary planar motions – rotation and translation will be investigated
first. After that, approximation of general motion by means of a set of instantaneous rotations
will be explained.

Rotation is given by centre S. Trajectories of all rotating points are circles with centre S,
see fig. 2.4 a). Normal lines to each trajectory pass through the centre S and the rotating point.
Tangent line passes through the rotating point perpendicularly to the normal line. Similarly,
envelopes of all rotating curves are circles with the centre S, see fig. 2.4 b). Normal line to



each envelope passes through the centre S perpendicularly to the rotating curve and intersects
the rotating curve at the point of contact. The tangent line is identical to the tangent line of
rotating curve constructed at the point of contact.
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Figure 2.4: Rotation

Translation is given by direction s. Trajectories of all translated points, see fig. 2.5 a), and
envelopes of all translated curves, see fig. 2.5 b), are straight lines parallel to the direction of
translation. Tangent lines are identical to trajectories and envelopes generated by translation.
Normal lines are perpendicular to the direction of translation, thus, they are mutually parallel
and their intersection lies at infinity. Obviously, translation can be considered as a special case
of rotation with centre of rotation at infinity.
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Figure 2.5: Translation

In general, it is possible to find elementary motion which maps any position of moving system
to another. Let us consider two congruent positions of straight line segment AiBi – AjBj ,
see fig. 2.6, and construct bisectors oA

ij
and oB

ij
of straight line segments AiAj and BiBj .

Depending on mutual position of these bisectors, the elementary motion can be identified as
follows.



1. Intersecting bisectors – elementary motion is rotation given by centre at intersection of
both bisectors: Sij “ oA

ij
X oB

ij
, see fig. 2.6 a).

2. Parallel bisectors – elementary motion is translation given by direction parallel with
straight line segment AiAj (or BiBjq: sij ‖ AiAj , sij ‖ BiBj , see fig. 2.6 b).

3. Identical bisectors – in the case of intersecting straight line segments, the elementary
motion is rotation given by centre Sij “ AiBi X AjBj , see fig. 2.6 c). In the case of
parallel straight line segments, the elementary motion is translation given by direction
sij K AiBi (or sij K AjBj), see fig. 2.6 d).
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Figure 2.6: Properties of elementary planar motions

Using these properties of elementary motion, it is possible to approximate any planar motion
between two consecutive positions of moving system by replacing rotation with either real centre
(rotation) or centre at infinity (translation). Example of this situation is drawn in fig. 2.7 a),
where the centre of replacing rotation Sij “ oA

ij
X oB

ij
is constructed firstly. After that, the

original trajectories τA, τB and τC between i-th and j-th position are replaced by circles τA
ij

,
τB

ij
and τC

ij
.

Since AjBj approaches AiBi, the secant lines AiAj and BiBj approximate the tangent lines
to the corresponding trajectory. The limiting position of secant lines AiAj and BiBj is the
tangent line tA

i
and tB

i
and the limiting position of Sij is Si, see fig. 2.7 b). Replacing rotation

which approximates the motion between two infinitely close positions of moving system is called
instantaneous rotation and centre Si is called instantaneous centre of rotation or pole of the
motion.



� Theorem 2.1 – Instantaneous centre of rotation. Instantaneous centre of rotation
Si is the intersection of all normal lines to all trajectories of all moving points and to all
envelopes of all moving curves at the i-th instant.

Proof. This statement follows from above mentioned considerations. l
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Figure 2.7: Approximation of general motion by instantaneous rotationat i-th instant

Instantaneous centre of rotation is useful for construction of tangent lines to the trajectories of
moving points and points of contact between moving curves and their envelopes at the considered
instant. Since the instantaneous centre of rotation lies at the intersection of all normal lines to
trajectories and envelopes at the given instant, it is necessary to know two of them to be able to
find this intersection. It follows that the motion in the plane is fully determined if the following
figures are given.

1. Two trajectories of two moving points.

2. One trajectory of moving point and one envelope of moving curve.

3. Two envelopes of two moving curves.

4. Fixed and moving centrodes (see section 2.2).

General planar motion can be approximated by a set of instantaneous rotations given by a set
of instantaneous centres. Then, the generated trajectories and envelopes can be approximated
by a set of circular arcs.

2.2 Centrodes of the motion

Any planar motion can be described by two curves in the plane, called centrodes. The fixed
centrode p is the locus of instantaneous centres of rotation in the plane of the fixed system.
The moving centrode h is the locus of instantaneous centres of rotation in the plane of the
moving system. The motion is realized by rolling the moving centrode on the fixed one. The
moving system is fixtly connected to the moving centrode. Since the moving centrode hj rolls
without slipping on the fixed centrode p, the instantaneous centre of rotation Si “ Sji is the
point of contact between the two centrodes p and hj . Thus, the fixed and moving centrodes
have a common tangent line at the instantaneous centre of rotation Si “ Sji , see fig. 2.8.
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Figure 2.8: Motion given by fixed and moving centrodes

In synthetic representation, the fixed centrode is constructed as a curve passing through
sufficient number of instantaneous centres of rotation. The moving centrode is constructed by
means of transformation of instantaneous centres of rotation into the plane of moving system.
The transformation from i-th instant into the required instant (usually the given 0-th instant)
is realized by construction of two congruent positions of a suitable figure (usually triangle)
containing the moving system and corresponding instantaneous centre of rotation, see fig. 2.14
in example 2.1, fig. 2.19 in example 2.2 and fig. 2.25 in example 2.3.

Another approach to the construction of moving centrode based on inverse motion is ex-
plained in the next section.

2.3 Inverse motion

Mutual motion of fixed and moving systems is relative, thus, it is possible to interchange their
roles. The motion in which the original fixed system moves and the original moving system
is stationary is called inverse motion. The role of centrodes is interchanged, too. The fixed
centrode of the original motion becomes the moving centrode of the inverse motion and vice
versa, see fig. 2.9.
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Figure 2.9: Inverse motion



Inverse motion has the following properties.

• If the moving point A generates the trajectory τA during the original motion, then the
trajectory τA envelopes the point Ai at the selected i-th instant during the inverse motion.

• If the moving curve a generates the envelope paq during the original motion, then the
envelope paq envelopes the curve ai at the selected i-th instant during the inverse motion.

• Motion obtained by interchanging centrodes is the inverse motion to the original motion.

2.4 Example problems – motion given by trajectories and en-
velopes

This section is focused on examples of planar motion given by the first three ways mentioned
on page 24. Only straight lines or circles are considered to be the given trajectories of moving
points or moving curves. Similarly, only straight lines, circles and points are considered to be
the given envelopes of moving curves.

At each of the following examples, the construction of a new position of the moving system
and fixed centrode p as the set of instantaneous centres of rotation is presented first. Then, the
trajectory τC of moving point C, envelope pcq of moving circle c “ pC, rq and envelope pdq of
moving straight line d is described, including the construction of tangent lines to the generated
trajectory and points of contact between the generated envelope and moving curve. Finally,
the construction of moving centrode h0 by means of transformation of instantaneous centres of
rotation into the plane of moving system at the given instant is shown.

� Example 2.1 – Motion given by two linear trajectories

Given

Linear trajectory τA, linear trajectory τB, points A, B, C, circle c “ pC, rq and straight line
d “ AB at initial position, see fig. 2.10 a).

Required

Construct fixed centrode p, trajectory τC of the given point C, envelope pcq of the given circle
c, envelope pdq of the given straight line d and moving centrode h at the given instant.

Analysis

The fixed system of the motion is represented by trajectories τA and τB. The given moving
system is represented by moving points A and B. The following rules apply to this motion.

• Point A is located on trajectory τA at each instant.

• Point B is located on trajectory τB at each instant.

• The distance ‖ AB ‖ of points A and B does not change.

This motion is inverse to the motion given by two point envelopes of two moving straight
lines, circular and point envelopes of moving straight lines or two circular envelopes of moving
straight lines. Since the motion given by two moving straight lines is solved in example 2.3, the



configuration of individual figures in this example and in example 2.3 has been chosen so that
the moving centrode h0 in fig. 2.14 and fixed centrode p in fig. 2.25 are identical.

Moreover, the motion given by two linear trajectories can be realized by rolling the con-
structed moving centrode h on the fixed centrode p, i.e. by hypocycloidal motion (see sec-
tion 2.5).
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Figure 2.10: Motion given by two linear trajectories

Graphical solution

a) New position of the given moving system

1. Choose new position A1 P τA, see fig. 2.10 b).

2. Construct new position B1 P τB so that ||A1B1|| “ ||A0B0||, i.e. point B1 lies at intersec-
tion of circle k1 “ pA1, r “ ||A0B0||q and trajectory τB: B1 “ k1 X τB. Note that it does
not matter if we choose new position B1 P τB and construct new position A1 P τA so that
||A1B1|| “ ||A0B0|| (not drawn in fig. 2.10 b). Both approaches are equal.

3. Draw straight line segment A1B1.

4. Continue in a similar way to obtain a sufficient number of instants. Do not forget special
limit positions of points A and B with respect to the intersection D of trajectories τA and
τB: A “ D or B “ D and positions where the distance ||AD|| or ||BD|| is maximal.

b) Instantaneous centre of rotation and fixed centrode p

1. Construct normal line nA
0
K τA, A0 P nA

0
, see fig. 2.10 b).

2. Construct normal line nB
0
K τB, B0 P nB

0
.

3. Centre of instantaneous rotation S0 “ nA
0
X nB

0
.



4. Continue in a similar way at each instant. Draw the fixed centrode p as a curve passing
through all positions of instantaneous centre of rotation. In this case, the fixed centrode
is the circle p “ pD, r “ ||DSi||q, drawn in fig. 2.11.

c) Trajectory of moving point

The position of moving point C with respect to the given moving system does not change, i.e.
the distances ||AC|| and ||BC|| are constant during the whole motion. To draw the trajectory
τC , it is necessary to construct point C at a sufficient number of instants and at each instant
construct the tangent line to the trajectory τC .

1. Construct new position of moving point C1 “ m1 X A1B1, m1 “ pA1, r “ ||A0C0|q, see
fig. 2.11 a).

2. Draw normal line nC
1
“ S1C

1.

3. Construct tangent line tC
1
K nC

1
, C1 P tC

1
.

4. Continue in a similar way at each instant. Finally, draw the trajectory as a curve passing
through all positions of the moving point and following the direction of tangent lines. The
whole trajectory τC (ellipse in this case) is drawn in fig. 2.11 b).
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Figure 2.11: Trajectory τC of moving point C (motion given by two linear trajectories)

d) Envelope of moving circle

The position of moving circle c “ pC, rq with respect to the moving system given by points
A and B does not change, i.e. the distances ||AC|| and ||BC|| and the radius r of the circle
c are constant during the whole motion. Envelope of moving circle c always has two branches
designated by pcq and pcq in figures. To draw the envelope, it is necessary to construct this circle
at a sufficient number of instants first. After that, the points of contact between the moving
circle and its envelope and tangent lines to the envelope at each instant are constructed.
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Figure 2.12: Envelope pcq of moving circle c (motion given by two linear trajectories)

1. Construct new position of moving circle c1 “ pC1, rq, see fig. 2.12 a).

2. Construct normal line nc
1
“ S1C

1.

3. Points of contact T c
1
, T

c1
“ c1 X nc

1
.

4. Construct tangent lines tc
1
K nc

1
, T c

1
P tc

1
and t

c1
K nc

1
, T

c1
P tc

1
.

5. Continue in a similar way at each instant. Finally, draw each branch of the envelope as
a curve passing through all corresponding points of contact and following the direction of
corresponding tangent lines. The whole envelope pcq, pcq is drawn in fig. 2.12 b). In this
case, the envelope branches are offset curves of the ellipse – trajectory τC of the centre C.
The trajectory τC is drawn by dashed line in fig. 2.12 b), too.

e) Envelope of moving straight line

In general, the position of moving straight line d with respect to the moving system given by
points A and B does not change, i.e. the angle formed by straight lines d and AB is constant
during the whole motion. Here, this angle is equal to zero, because d “ AB. The moving line is
tangent line to its envelope at each instant. To draw the envelope, it is necessary to construct
the moving line at a sufficient number of instants and at each instant construct point of contact
between the moving line and its envelope.

1. Construct normal line nd
1
K d1, S1 P n

d1 , see fig. 2.13 a).

2. Point of contact T d
1
“ d1 X nd

1
.

3. Continue in a similar way at each instant. Finally, draw the envelope as a curve passing
through all positions of the point of contact and following the direction of tangent lines,
i.e. individual positions of the moving straight line. The whole envelope pdq (irregular
asteroid in this case) is drawn in fig. 2.13 b).
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Figure 2.13: Envelope pdq of moving straight line d (motion given by two linear trajectories)

f) Moving centrode

The transformation from i-th instant into the 0-th instant is realized by construction of two
congruent positions of triangle 4AiBiSi – 4A0B0S0

i . In this case, the moving centrode is the
circle h0 “ pH0, r “ H0Dq, where H0 is the center of straight line segment S0D, see fig. 2.14.
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� Example 2.2 – Motion given by circular and linear trajectories

Given

Circular trajectory τA, linear trajectory τB, points A, B, C, circle c “ pC, rq and straight line
d “ AB at initial position, see fig. 2.15.

Required

Construct fixed centrode p, trajectory τC of the given point C, envelope pcq of the given circle
c, envelope pdq of the given straight line d and moving centrode h at the given instant.

Analysis

The fixed system of this motion is represented by trajectories τA and τB. The given moving
system is represented by moving points A and B. The following rules apply to this motion.

• Point A is located on trajectory τA at each instant.

• Point B is located on trajectory τB at each instant.

• The distance ||AB|| of points A and B does not change.

This motion is inverse to the motion given by circular trajectory of moving point and point
envelope of moving straight line or circular trajectory of moving point and circular envelope of
moving straight line.
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Figure 2.15: Motion given by circular and linear trajectories



Graphical solution

a) New position of the given moving system

1. Choose new position A1 P τA, see fig. 2.15 b).

2. Construct B1 P τB so that ||A1B1|| “ ||A0B0||, i.e. B1 “ k1XτB, k1 “ pA1, r “ ||A0B0||q.
Note that it does not matter if we choose new position B1 P τB and construct A1 so that
||A1B1|| “ ||A0B0|| (not drawn in fig. 2.15 b). Both approaches are equal.

3. Draw straight line segment A1B1.

4. Continue in a similar way to obtain a sufficient number of instants. Do not forget special
positions of point A with respect to the trajectories τA or τB denoted by A2, A3 and A4

in fig. 2.15 b), where OAA2 K τB, OAA3 K τB and A4 P τB.

b) Instantaneous centre of rotation

1. Construct normal line nA
0
“ OAA0, A0 P nA

0
, see fig. 2.15 b).

2. Construct normal line nB
0
K τB, B0 P nB

0
.

3. Instantaneous centre of rotation S0 “ nA
0
X nB

0
.

4. Continue in a similar way at each instant. In the special cases where both normal lines to
the given trajectories are parallel, i.e. nA

2 ‖ nB2
and nA

3 ‖ nB3
, the instantaneous centres

of rotation lie at infinity: S2 Ñ 8 and S3 Ñ 8. At the special fourth instant nA
4
“ τB

and S4 “ B4. The fixed centrode p is an open curve with two branches containing points
at infinity, see fig. 2.16 b).

c) Trajectory of moving point

The position of moving point C with respect to the given moving system does not change,
i.e. the distances AC and BC are constant during the whole motion. Since the point C does
not lie on straight line AB, the moving system can be represented by triangle 4ABC drawn in
dot-and-dash line in fig. 2.16.

1. Construct new position of moving point C1 “ l1 Xm1, l1 “ pA1, r “ ||A0C0||q,
m1 “ pB1, r “ ||B0C0||q, see fig. 2.16 a).

2. Draw normal line nC
1
“ S1C

1.

3. Construct tangent line tC
1
K nC

1
, C1 P tC

1
.

4. Continue in a similar way at each instant. Finally, draw the trajectory as a curve passing
through all positions of the moving point and following the direction of tangent lines. The
whole trajectory τC is drawn in fig. 2.16 b).

d) Envelope of moving circle

The position of moving circle c “ pC, rq with respect to the moving system and its radius
does not change during the whole motion.
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Figure 2.16: Trajectory τC of moving point C (motion given by circular and linear trajectories)

1. Construct new position of moving circle: c1 “ pC1, rq, see fig. 2.17 a).

2. Construct normal line nc
1
“ S1C

1.

3. Points of contact T c
1
, T

c1
“ c1 X nc

1
.

4. Construct tangent lines tc
1
K nc

1
, T c

1
P tc

1
and t

c1
K nc

1
, T

c1
P t

c1
.

5. Continue in similar a way at each instant. Finally, draw each branch of the envelope as
a curve passing through all corresponding points of contact and following the direction of
corresponding tangent lines. The whole envelope pcq, pcq is drawn in fig. 2.17 b).
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Figure 2.17: Envelope pcq of moving circle c (motion given by circular and linear trajectories)

e) Envelope of moving straight line

The position of moving straight line d with respect to the moving system given by points A
and B is constant, because d “ AB.

1. Construct normal line nd
1
K d1, S1 P n

d1 , see fig. 2.18 a).

2. Point of contact T d
1
“ d1 X nd

1
.



Ct

C

m1

1 1

0

0

t
c

t c

ct
1

c
t

1

2 2c
tct

1
nd

d

nA0

n
0

3d
2d

T

T
d

T
d

4d

d

d

d

d d

d

B
1

2An

8S
2

2Bn

1An
Ct
0

n
2C

Ct
2

nC1

n
0C

1
S

nB0

0An
nB1

1
A

τ
B

2
B

0
C

C
2

τ
A

OA

S
0

0
B

A
2 2

A

A
0

B
0

0
S

AO

A
τ

B
2

B
τ

A
1

nA0

0Bn

S
1

C0n

nB2

2
S 8

1
B

2c

2c
T

0c
T

0

T
c

C
2

n
2C

0
C

c0

1
C

c1

c
T

1

nB1

1Cn
1An

T
c1

1
S

2An

8S
2

2Bn

8

4
nB

τ
A T 8

1

= 4A1
= n

B
τ

T=

0

3
2

1

0

A
4

4
B = S

4

1Bn

nA1

0
A

A
1

B
0

B
1

OA

S
0 0Bn

A
2

2
B

3
= B

3
A An

3

Bn
3

8S
3

A
τ

c0

C
0

0

0B

τ
B

0
A

AO

4

A
τ

OA

S
0

0
B

0
A

A
2

2
B

3
= B

3
A

1
B

1
k

0An

1
S

1Bn

nB0

1An

A
1

nB2

2
S 8

nA
2

3
S 8

3
nB

3
nA

A
4

4
B = S

4

τ
B
= n

A

Bn
4

r

nA2

l

1

0
A

a)

a)

Figure 2.18: Envelope pdq of moving straight line d (motion given by circular and linear trajec-
tories)



3. Continue in a similar way at each instant. Finally, draw the envelope as a curve passing
through all positions of the point of contact and following the direction of tangent lines,
i.e. individual positions of the moving straight line. The important part of envelope pdq is
drawn in fig. 2.13 b).

f) Moving centrode

The transformation from i-th instant into the 0-th instant is realized by construction of two
congruent positions of triangle 4AiBiSi – 4A0B0S0

i . The moving centrode h0 is open curve
with two branches, see fig. 2.19.
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� Example 2.3 – Motion given by two point envelopes of moving straight lines

Given

Point envelope paq of straight line a, point envelope pbq of straight line b, point C, circle c “ pC, rq,
straight lines a, b and d at initial position, see fig. 2.20 a).

Required

Construct fixed centrode p, trajectory τC of the given point C, envelope pcq of the given circle
c, envelope pdq of the given straight line d and moving centrode h at the given instant.



Analysis

The given fixed system is represented by point envelopes paq and pbq. The given moving system
is represented by moving straight lines a and b. The following rules apply to this motion.

• Straight line a passes through point envelope paq at each instant.

• Straight line b passes through point envelope pbq at each instant.

• The angle α formed by straight lines a and b does not change.

This motion is inverse to the motion given by two linear trajectories, thus, the configuration
of individual figures in this example and in example 2.1 has been chosen so that the moving
centrode h0 in fig. 2.25 and fixed centrode p in fig. 2.14 are identical.

Moreover, the motion given by two point envelopes can be realized by rolling the constructed
moving centrode h on the fixed centrode p, i.e. by pericycloidal motion (see section 2.5).
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Figure 2.20: Motion given by two point envelopes

Graphical solution

a) New position of the given moving system

1. Choose new position a1, paq P a1, see fig. 2.20 b).

2. Construct new position b1, pbq P b1 so that the angle =a1b1 “ =a0b0: draw circle m “

pD0, r “ Rq, radius R is suitably chosen, D0 “ a0 X b0. Choose point D1 P a1 and draw
circle m1 “ pD1, r “ Rq. Draw circle l1 “ pE1, r “ ||EF ||q, E1 “ m1 X a1, E “ m X a0,
F “ m X b0. Construct straight line b1 “ D1F 1, F 1 “ l1 Xm1. Construct b1||b1, b1 P pbq.
Note that it does not matter if we choose new position of b1, b1 P pbq and construct new
position a1 so that =a1b1 “ =a0b0 (not drawn in fig. 2.20 b). Both approaches are equal.



3. Continue in a similar way to obtain a sufficient number of instants. Do not forget special
positions of moving straight lines a P pbq and b P paq.

b) Instantaneous centre of rotation

Point envelope can be considered a circle with zero radius and the corresponding straight
line a tangent line to this circle. Thus, normal line to the point envelope is a line perpendicular
to the moving straight line passing through the point envelope.

1. Construct normal line na
0
K a0, paq P na

0
.

2. Construct normal line nb
0
K b0, pbq P nb

0
.

3. Instantaneous centre of rotation S0 “ na
0
X nb

0
.

4. Continue in a similar way at each instant. Draw the fixed centrode p as a curve passing
through all positions of instantaneous centre of rotation. In this case, the fixed centrode
is the circle p “ pP, r “ ||D0P ||q, where P is the centre of D0S0. The fixed centrode is
drawn in fig. 2.22.

c) Trajectory of moving point

In general, the position of a point with respect to two intersecting straight lines can be
expressed by two (oriented) distances obtained by orthogonal projection of the point onto one
of the two lines, see fig. 2.21. Here, the orthogonal projection of point C onto straight line b is
drawn. The position of point C with respect to the straight lines a and b is given by normal
distance v “ ||CD||, CD K b and the distance u “ ||DE|| in the direction of line b.

In this example, the distance u “ 0 (see fig. 2.20), therefore, oriented distance v of moving
point C from line b orthogonally measured from intersection D has to be preserved only. Note
that it is possible to construct position of point C by means of orthogonal projection onto the
line a, too. However, this approach is slightly more complicated because of non-zero distances
u and v.
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Figure 2.21: Position of point C with respect to two intersecting straight lines a and b

1. Construct new position C1: construct line l1 K b1, D1 P l1. Draw circle m1 “ pD1, r “
||D0C0||q. Point C1 “ l1 Xm1, see fig. 2.22 a).

2. Draw normal line nC
1
“ S1C

1.

3. Construct tangent line tC
1
K nC

1
, C1 P tC

1
.

4. Continue in a similar way at each instant. Finally, draw the trajectory as a curve passing
through all positions of moving point and following the direction of tangent lines. The
whole trajectory τC (epicycloidal curve, see section 2.5) is drawn in fig. 2.22 b).
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Figure 2.22: Trajectory τC of moving point C (motion given by two point envelopes)

d) Envelope of moving circle

The position of moving circle c “ pC, rq with respect to the moving system and its radius
does not change during the whole motion.

1. Construct new position c1 “ pC1, rq, see fig. 2.23 a).

2. Construct normal line nc
1
“ S1C

1.

3. Points of contact T c
1
, T

c1
“ c1 X nc

1
.

4. Construct tangent lines tc
1
K nc

1
, T c

1
P tc

1
and t

c1
K nc

1
, T

c1
P tc

1
.

5. Continue in a similar way at each instant. Finally, draw each branch of the envelope as
a curve passing through all corresponding points of contact and following the direction of
corresponding tangent lines. The whole envelope pcq, pcq is drawn in fig. 2.23 b).

e) Envelope of moving straight line

The position of moving straight line d with respect to the moving system is given by
parallelism d ‖ b and coincidence C P d. This relationship has to be preserved during the
whole motion.

1. Construct new position d1 ‖ b1, C1 P d1, see fig. 2.24 a).

2. Construct normal line nd
1
K d1, S1 P n

d1 .

3. Point of contact T d
1
“ d1 X nd

1
.

4. Continue in a similar way at each instant. Finally, draw the envelope as a curve passing
through all positions of the point of contact and following the direction of tangent lines, i.e.
individual positions of the moving straight line. The whole envelope pdq (circle pdq “ ppbq,
r “ vq in this case) is drawn in fig. 2.24 b).
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Figure 2.23: Envelope pcq of moving circle c (motion given by two point envelopes)
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Figure 2.24: Envelope pdq of moving straight line d (motion given by two point envelopes)

f) Moving centrode

The transformation from i-th instant into the 0-th instant is realized by construction of two
congruent positions of triangle 4pbqDiSi – 4EiD0S0

i , Ei P b0. The moving centrode is the
circle h0 “ pD0, r “ ||D0S0||q, see fig. 2.25.
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Figure 2.25: Moving centrode h0 (motion given by two point envelopes)
l

2.5 Cyclic motions

The motion determined by fixed and moving centrodes where both centrodes are circles or one
centrode is a straight line and the second one is a circle is called cyclic motion. Trajectories of
moving points and envelopes of moving curves generated during cyclic motion are called cycloids.
According to the shape of centrodes and their mutual configuration, the cyclic motions can be
classified as follows.

• Cycloidal motion – the fixed centrode p is a straight line, the moving centrode h is a circle
h “ pH, rq, see fig. 2.26. Cycloidal motion is inverse to involute motion.

• Involute motion – the fixed centrode p is a circle p “ pP, rq, the moving centrode h is
a straight line, see fig. 2.27. Involute motions is inverse to cycloidal motion.

• Epicycloidal motion – both centrodes are circles, the moving centrode h “ pH, rhq is
rolling by its external circumference along the external circumference of the fixed centrode
p “ pP, rpq, see fig. 2.28. Epicycloidal motion is inverse to itself.

• Hypocycloidal motion – both centrodes are circles, the moving centrode h “ pH, rhq is
rolling by its external circumference along the internal circumference of the fixed centrode
p “ pP, rpq, see fig. 2.29. Hypocycloidal motion is inverse to pericycloidal motion.

• Pericycloidal motion – both centrodes are circles, the moving centrode h “ pH, rhq is
rolling by its internal circumference along the external circumference of the fixed centrode
p “ pP, rpq, see fig. 2.30. Pericycloidal motion is inverse to hypocycloidal motion.

Examples of trajectories of moving points, envelopes of moving circles and envelopes of
moving straight lines generated by cyclic motions are given in section 2.5. Here, the fixed
centrode is drawn by dot line, the moving centrode is drawn by dash line, generated trajectories
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p

h

p

P

p

HP

h

H

p

P

p

p

p

h

r h

h

r

h

h

r

r

h

r

r

r

PH

p

r

H
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Table 2.1: Example of cyclic motions

Trajectory of moving points Envelope of moving circles Envelope of moving lines
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and envelopes are drawn by thick continuous line and the trajectories of the centres of moving
circles are drawn by dot-and-dash line.

Depending on mutual position of moving centrode h and a moving figure, the cycloid can
be prolate (e.g. the moving point lies outside the moving centrode), simple (e.g. the moving
point lies on the moving centrode) or curtate (e.g. the moving point is located inside the moving
centrode).

If rp{rh is an integer or rational number expressed in lowest terms, the curves generated by
epicycloidal, hypocycloidal or pericycloidal motion are closed. Otherwise, the generated curves
never close.

2.6 Example problems – cyclic motion

In this section, the construction of curves generated by cyclic motion is shown in examples.
Firstly, the construction of new position of moving centrode h is presented. Then, the construc-
tion of trajectory τC of moving point C, envelope pcq of moving circle c “ pC, rq and envelope pdq
of moving straight line d is described. This description includes determination of mutual relation
between the moving centrode h and the moving figure (point, circle, straight line) which does
not change during the whole motion, construction of tangent lines to the generated trajectory
and construction of points of contact between the generated envelope and moving curve.

� Example 2.4 – Cycloidal motion

Given

Fixed centrode p, moving centrode h “ pH, rq, point C, circle c “ pC, r “ rcq and straight line
d at initial position, see fig. 2.31.
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Figure 2.31: Cycloidal motion – example

Required

Construct trajectory τC of the given point C, envelope pcq of the given circle c and envelope pdq
of the given straight line d.



Analysis

The fixed system is represented by the fixed centrode p. The given moving system is represented
by moving centrode h. At j-th instant, the moving centrode hj touches the fixed centrode p at
point of contact Sji “ Sj , i “ j. This motion is inverse to the involute motion, see example 2.5.

Graphical solution

a) New position of the moving centrode
To be able to construct the moving centrode h at a sufficient number of instants hj , j “

0, 1, . . . , n, it is necessary to construct a sufficient number of instantaneous centres of rotation
S0
i P h

0, i “ 0, 1, . . . , n and the same number of instantaneous centres of rotation Sj P p, first.
The rolling is realized without slipping, therefore the distance ||SjSj`1|| on the fixed centrode p

has to be equal to the length of arc ŔS0
i S

0
i`1 on the moving centrode h. Thus, the procedure of

construction can be made as follows.
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Figure 2.32: Construction of new positions of the moving centrode h (cycloidal motion)

1. Divide the moving centrode h0 into a sufficient number of n (at least n “ 6) equal parts
to obtain S0

i P h0, i “ 0, 1, . . . , n, see fig. 2.32.

2. Calculate the length of arc
ŔS0
i S

0
i`1 “

1
n2πr, (2.1)

take it in compass and mark it n-times from S0 on the fixed centrode p to obtain instan-
taneous centres of rotation Sj . Note that it is possible to use any synthetic rectification
method to approximate the length of an arc. For example, simple approximation of the
length of arc ŊAB by the length of polygon ACDEFB is shown in fig. 2.33.

3. Draw trajectory τH of the centre H of moving centrode h: τH ‖ p, H0 P τH .

4. Construct centre Hj at each instant: take the length given by eq. (2.1) in compass and
mark it n-times from H0 on the trajectory τH .

5. Draw moving centrode hj “ pHj , rq at each instant.

6. Construct instantaneous centres of rotation Sji P h
j , i, j “ 0, 1, . . . n. Note that depend-

ing on actual configuration of moving figures attached to the moving centrode, it is not
necessary to construct all positions hj of the moving centrode, neither it is necessary to
construct all instantaneous centres of rotation Sji at each position hj .
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Figure 2.33: Approximation of the length of arc ŊAB by the length of polygon ACDEFB

b) Trajectory of moving point

The position of point C with respect to the moving centrode h has to be determined by two
different parameters – for example by the distances of point C from two different points located
on h. Here, the distances ||C0S0

3 || and ||C0S0
4 || are chosen, see fig. 2.34. Thus, the construction

of trajectory of moving point includes the following steps.

1. Construct new position Cj “ lj Xmj , circle lj “ pSj3, r “ ||C
0S0

3 ||q, circle mj “ pSj4, r “
||C0S0

4 ||q.

2. Construct normal line nC
j
“ CjSj .

3. Construct tangent line tC
j
K nC

j
, Cj P tC

j
.

4. Draw the trajectory τC as a curve passing through all positions of the moving point and
following the direction of corresponding tangent lines.
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Figure 2.34: Trajectory τC of moving point C
(cycloidal motion)



c) Envelope of moving circle

The position of moving circle c with respect to the moving centrode h is given by position
of the centre C of the circle c. The radius rc does not change during the whole motion.

1. Construct new position of moving circle cj “ pCj , r “ rcq.

2. Draw normal line nc
j
“ CjSj .

3. Points of contact T c
j
, T

cj
“ cj X nc

j
.

4. Construct tangent lines tc
j
K nc

j
, T c

j
P tc

j
and t

cj
K nc

j
, T

cj
P t

cj
.

5. Draw each branch of envelope pcq, pcq as a curve passing through all corresponding points
of contact and following the direction of corresponding tangent lines, see fig. 2.35.
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Figure 2.35: Envelope pcq of moving circle c
(cycloidal motion)

d) Envelope of moving straight line

The position of moving straight line d with respect to the moving centrode h has to be
determined by two parameters – for example by the distance between straight line d and the
centre H, and by angle formed by line m passing through H perpendicularly to the moving line
d and suitably chosen reference radius of h. Here, the radius HjSj0 is chosen as the reference

radius, see fig. 2.36. Thus, the distance ||HjEj || and the angle =Sj0H
jDj do not change during

the whole motion.

1. Construct straight line m K d0, H0 P m.

2. Point Dj “ kj X hj , circle kj “ pSj0, r “ ||S
0
0D

0||q, D0 “ h0 Xm.

3. Draw straight line HjDj .

4. Point Ej “ lj XHjDj , circle lj “ pHj , r “ ||H0E0||q.



5. Construct new position dj K HjDj , Ej P dj .

6. Construct normal line nd
j
K dj , nd

j
P Sj .

7. Point of contact T d
j
“ nd

j
X dj .

8. Draw the envelope as a curve passing through all points of contact and following the
direction of tangent lines, i.e. individual positions of moving straight line d.
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Figure 2.36: Envelope pdq of moving straight line d (cycloidal motion)
l

� Example 2.5 – Involute motion

Given

Fixed centrode p “ pP, rq, moving centrode h, point C, circle c “ pC, rcq and straight line d at
initial position, see fig. 2.37.
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Figure 2.37: Involute motion – example



Required

Construct trajectory τC of the given point C, envelope pcq of the given circle c and envelope pdq
of the given straight line d.

Analysis

The fixed system is represented by the fixed centrode p. The given moving system is represented
by moving centrode h. At j-th instant, the moving centrode hj touches the fixed centrode p at
point of contact Sji “ Sj , i “ j. This motion is inverse to the cycloidal motion, see example 2.4.

Graphical solution

a) New position of the moving centrode

In the case of involute motion, the moving centrode h is a tangent line to the fixed centrode
p at each instant.

1. Divide the fixed centrode p into a sufficient number of n (at least n “ 6) equal parts to
obtain Sj P p, j “ 0, 1, . . . , n, see fig. 2.38.
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Figure 2.38: New positions of moving centrode h (involute motion)

2. Calculate the length of arc

ŔSjSj`1 “
1

n
2πr (2.2)

(or approximate it by the length of a polygon, see fig. 2.33), take it in compass and mark
it n-times from S0

0 on the moving centrode h0 to obtain instantaneous centres of rotation
Sji , i “ 0, 1, . . . , n.



3. Draw radius PSj of the fixed centrode p.

4. Construct new position hj K PSj , Sj P h
j .

5. Construct instantaneous centres of rotation Sji P h
j , see fig. 2.38.

b) Trajectory of moving point

The position of moving point C with respect to the moving centrode hj is given by two
distances according to the fig. 2.21. Here, the normal distance ||CjDj || of point C from the
moving centrode h and the distance ||DjSj0|| along the moving centrode hj have to be constant
during the whole motion.

1. Construct m0 K h0, C0 P m0, see fig. 2.39.

2. Point Dj “ hj X lj , circle lj “ pSj0, r “ ||S
0
0D

0||q.

3. Construct mj K hj , Dj P mj .

4. New position Cj “ mj X kj , circle kj “ pDj , r “ ||D0C0||q.

5. Draw normal line nC
j
“ CjSj .

6. Construct tangent line tC
j
K nC

j
, Cj P tC

j
.

7. Draw trajectory τC as a curve passing through all positions of the moving point and
following the direction of tangent lines.

c) Envelope of moving circle

Position of moving circle c with respect to the moving centrode h is given by position of its
centre C. The radius rc does not change during the whole motion.

1. Construct new position of moving circle cj “ pCj , r “ rcq, see fig. 2.40.

2. Draw normal line nc
j
“ CjSj .

3. Points of contact T c
j
, T

cj
“ cj X nc

j
.

4. Construct tangent lines tc
j
K nc

j
, T c

j
P tc

j
and t

cj
K nc

j
, T

cj
P t

cj
.

5. Draw each branch of envelope pcq, pcq as a curve passing through all corresponding points
of contact and following the direction of corresponding tangent lines, see fig. 2.40.

d) Envelope of moving straight line

The position of moving straight line d with respect to the moving centrode h is determined
by angle α “ =hjdj , see fig. 2.41, and the distance of the intersection of moving straight line d
and the moving centrode h from a suitable chosen reference point located on h. According to
fig. 2.41, the instantaneous centre of rotation Sj0 has been chosen as the reference point. Thus,

the angle α and the distance ||Sj0D
j || have to be constant during the whole motion.

1. Construct new position dj . Use construction given in fig. 2.20 b), for example.



2. Construct normal line nd
j
K dj , Sj P n

dj .

3. Point of contact T d
j
“ dj X nd

j
.

4. Draw the envelope pdq as a curve passing through all points of contact and following
direction of tangent lines.
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Figure 2.39: Trajectory τC

of moving point C (involute motion)

Figure 2.40: Envelope pcq
of moving circle c (involute motion)
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Figure 2.41: Envelope pdq of moving straight line d (involute motion)
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� Example 2.6 – Epicycloidal motion

Given

Fixed centrode p “ pP, rpq, moving centrode h “ pH, rhq, rp “ 2rh, point C, circle c “ pC, rcq
and straight line d at initial position, see fig. 2.42 a).
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Figure 2.42: Epicycloidal motion

Required

Construct trajectory τC of the given point C, envelope pcq of the given circle c and envelope pdq
of the given straight line d.

Analysis

The fixed system is represented by the fixed centrode p. The given moving system is represented
by moving centrode h. At j-th instant, the moving centrode hj touches the fixed centrode p at
point of contact Sji “ Sj , i “ j. This motion is inverse to itself.



Graphical solution

a) New position of the moving centrode
The construction of instantaneous centres of rotation on both centrodes is very easy because

rp “ 2rh. Thus, the fixed centrode p can be divided into n equal parts and the moving centrode
h into n

2 equal parts, to obtain equal length of arcs

ŔSjSj`1 “
1
n2πrp

and

Ŕ

Sji S
j
i`1 “

1
n
2

2πrh “
1
n2πrp.

In fig. 2.42 b) the fixed centrode is divided into 12 parts by 30˝ and the moving centrode is divided
in 6 parts by 60˝. It is obvious that for i ą 5 the instantaneous centres of rotation coincide with
the instantaneous centres already drawn (in fig. 2.42 b) the coinciding instantaneous centres of
rotation are not designated).
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Figure 2.43: Trajectory τC of moving point C and envelope pcq of moving circle c
(epicycloidal motion)



After determination of instantaneous centres of rotation on the fixed centrode p and the
moving centrode h0, the procedure of construction is as follows.

1. Draw trajectory τH of the centre H of the moving centrode h: τH “ pP, r “ ||PH0||q.

2. Centres Hj “ τH X PSj .

3. Draw moving centrode hj “ pHj , r “ rhq at each instant.

4. Construct instantaneous centres of rotation Sji P h
j , i, j “ 0, 1, . . . , n.

b) Curves generated by epicycloidal motion

Since the moving centrode is a circle, the determination of position of moving point C with
respect to the moving centrode h, the construction of trajectory τC of moving point C, the
construction of envelope pcq, pcq of moving circle c as well as the construction of envelope pdq of
moving straight line d is given by procedures described in example 2.4.

A part of the trajectory of the moving point and the envelope of the moving circle generated
by epicycloidal motion is drawn in fig. 2.43. A part of the envelope of the moving straight line
is drawn in fig. 2.44.
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� Example 2.7 – Hypocycloidal motion

Given

Fixed centrode P “ pP, rpq, moving centrode h “ pH, rhq, rp “ 2rh, point C, circle c “ pC, rcq
and straight line d at initial position, see fig. 2.45 a).

Required

Construct trajectory τC of the given point C, envelope pcq of the given circle c and envelope pdq
of the given straight line d.
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Figure 2.45: Hypocycloidal motion – example



Analysis

The fixed system is represented by the fixed centrode p. The given moving system is represented
by moving centrode h. At j-th instant, the moving centrode hj touches the fixed centrode p at
the point of contact Sji “ Sj . This motion is inverse to pericycloidal motion, see example 2.8.

Graphical solution

a) New position of the moving centrode

Since rp “ 2rh, it is possible to follow instructions given in example 2.6 to construct new
positions of moving centrode h, see fig. 2.45 b).

b) Curves generated by hypocycloidal motion

Since the moving centrode is a circle, the determination of position of moving point C with
respect to the moving centrode h, the construction of trajectory τC of moving point C, the
construction of envelope pcq, pcq of moving circle c as well as the construction of envelope pdq of
moving straight line d is given by procedures described in example 2.4. The only difference is
the choice of reference instantaneous centres of rotation located on the moving centrode when
determining the position of moving point C with respect to the moving centrode h. Here, the
instantaneous centres of rotation Sj2 and Sj3 have been chosen as the reference points. Thus, the

distances ||CjSj2|| and ||CjSj3|| have to remain constant during the whole motion.

A part of the trajectory of the moving point and the envelope of the moving circle generated
by hypocycloidal motion is drawn in fig. 2.46. A part of the envelope of the moving straight line
is drawn in fig. 2.47.

( )

n

a)

b)

C

( )

p

0

00
S=S

S = S

S = S

S

S

1

1

1

2 2

2

3

4

11
S

S
10

9
S

8
S

7
S

6
S

5
S

0h

1h 2h

P

0H
H11

10H

Hτ
9H

8H

7H

2H

H1

3H

4H

5H
H6

1

S
2

p

S
4

11
S

S
10

9
S

8
S

7
S

6
S

5
S

c

Cτ

1

nC
cT
1

1

tc

ct
1

1c

1Ct

Tc1

c0 tC
0

tc
0

0ct

0

Tc

c0T

1C

0C

3

2

1S0

3
S=P

S1

2

0S
4

0S

5

0S
h1

0h
1H

τ H

0
S S

0

0=

S = S1

1

1

H0
S
1

0

C0

c
r

r

p

P

r h

p

0h H0

c0

0d

c

0

S
3

Figure 2.46: Trajectory τC of moving point C and envelope pcq of moving circle c
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� Example 2.8 – Pericycloidal motion

Given

Fixed centrode P “ pP, rpq, moving centrode h “ pH, rhq, rp “ 2rh, point C, circle c “ pC, rcq
and straight line d at initial position, see fig. 2.48 a).

Required

Construct trajectory τC of the given point C, envelope pcq of the given circle c and envelope pdq
of the given straight line d.

Analysis

The fixed system is represented by the fixed centrode p. The given moving system is represented
by moving centrode h. At j-th instant, the moving centrode hj touches the fixed centrode p at
point of contact Sji “ Sj , i “ j. This motion is inverse to hypocycloidal motion, see example
2.7.

Graphical solution

a) New position of the moving centrode

Since rh “ 2rp, the situation in this example is similar to the case of epicycloidal or hypocy-
cloidal motions described in examples 2.6 and 2.7. Here, the moving centrode h can be divided
into n equal parts and the fixed centrode p into n

2 equal parts, to obtain arcs of equal length

Ŕ

Sji S
j
i`1 “

1
n2πrh “

1
n4πrp
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Figure 2.48: Pericycloidal motion – example

and

ŔSjSj`1 “
1
n
2

2πrp “
1
n4πrp.

In fig. 2.48 b) the fixed centrode is divided into 6 parts by 60˝ and the moving centrode
is divided into 12 parts by 30˝, the coinciding instantaneous centres of rotation on the fixed
centrode are not designated. The trajectory τH “ p and centres Hj “ Sj`3.
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Figure 2.49: Trajectory τC of moving point C and envelope pcq of moving circle c
(pericycloidal motion)
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Figure 2.50: Envelope pdq of moving straight line d (pericycloidal motion)



b) Curves generated by pericycloidal motion

Since the moving centrode is a circle, the determination of the position of moving point C
with respect to the moving centrode h, the construction of trajectory τC of moving point C, the
construction of envelope pcq, pcq of moving circle c as well as the construction of envelope pdq of
moving straight line d is given by procedures described in example 2.4. The only difference is
the choice of reference instantaneous centres of rotation located on the moving centrode when
determining the position of moving point C with respect to the moving centrode h. Here, the
instantaneous centres of rotation Sj8 and Sj9 have been chosen as the reference points. Thus, the

distances ||CjSj8|| and ||CjSj9|| have to remain constant during the whole motion.
A part of trajectory of moving point and envelope of moving circle generated by pericycloidal

motion is drawn in fig. 2.49. A part of envelope of moving straight line is drawn in fig. 2.50. l



Chapter 3

Methods of projection

Projection is a special type of mapping of 3D objects on a 2D medium (technical drawing,
display) developed to represent geometrical shape and graphical information. Two basic types
of projection methods can be distinguished – central projection and parallel projection.

3.1 Central projection

Central projection (perspective projection) is given by a real point – centre of projection S and
plane of projection ρ, S R ρ. The central projection (central view) of an arbitrary point A, A ‰ S
is the intersection point A1 P ρ of projecting line a “ AS and plane of projection ρ: A1 “ aX ρ,
see fig. 3.1, where an example of central projection of points A,B R ρ and C P ρ is depicted (the
intersections A1, B1 and C 1 are estimated). The centre of projection has no image. The central
projection of an object is a figure obtained as a set of central projections of all points of the
projected object.

Application of central projection in mechanical engineering is not appropriate due to distor-
tion of drawn objects, see example of corner brace in fig. 3.2. Special case of central projection
– linear perspective – is widely used in art, architecture and civil engineering because the result
picture closely approximates the view obtained by the human eye.
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3.2 Parallel projection

Parallel projection is given by direction of projection s and plane of projection ρ, s ∦ ρ. The
direction of projection is represented by a pencil of straight lines passing through the same
point at infinity (ideal point) and intersecting the plane of projection at a real point. Parallel
projection can be considered a special type of central projection with the centre of projection at
infinity. The parallel projection (parallel view) of an arbitrary point lies at the intersection of the
line parallel with the direction of projection passing through the point and plane of projection.

Straight line parallel with the direction of projection is called projecting line and straight line
parallel with the plane of projection is called principal line. Intersection of line and the plane of
projection is called piercing point of the line. Plane parallel with the direction of projection is
called projecting plane and plane parallel with the plane of projection is called principal plane.
The intersection of a plane and plane of projection is called trace of the plane.

Parallel view of an object is a figure obtained as a set of parallel views of all points of the
projected object. Specially, parallel view of a point, line and plane are obtained as follows.

• Parallel view of point A is point A1 at intersection of projecting line a ‖ s, A P a and plane
of projection ρ: A1 “ aX ρ, see fig. 3.3 a), where an example of parallel view of points A,
B and C is depicted (the intersections A1, B1 and C 1 are estimated).

• Parallel view of projecting line a ‖ s is point a1 at the intersection of projecting line a
and plane of projection ρ: a1 “ a X ρ. Parallel view of line b which is not projecting line
b ∦ s is the intersection line b1 of projecting plane β ‖ s, b Ă β and plane of projection ρ:
b1 “ β X ρ, see fig. 3.3 b).

• Parallel view of projecting plane α ‖ s is the intersection line α1 of projecting plane α and
plane of projection ρ: α1 “ αXρ. Parallel view β1 of plane β which is not projecting plane
β ∦ ρ is the whole plane of projection ρ: β1 “ ρ, see fig. 3.3 c).
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Figure 3.3: Parallel projection

According to the angle ϕ between the direction of parallel projection and the plane of pro-
jection ρ, two types of parallel projection are distinguished – oblique projection when ϕ ‰ 90˝

and orthogonal projection when ϕ “ 90˝. Both types of parallel projection are widely used in
mechanical engineering due to the following important properties.

• The planar figure U located in a principal plane and its parallel view U 1 are congruent
figures U – U 1 because there exists a translation defined by the direction of projection s
which maps figure U into U 1.



• Parallelism is invariant property of parallel projection. It follows that parallelism of parallel
straight lines which are not projecting lines is preserved due to the parallelism of their
projecting planes. Consequently, parallel planes have parallel traces as well as views of
principal lines.

• Parallel projection preserves dividing ratio of three different collinear points A, B and C:
||AB|| : ||BC|| “ ||A1B1|| : ||B1C 1||. It follows, for example, that the centre of a figure is
projected to the centre of its parallel view.

• Circle c which does not lie in a projection plane is projected as an ellipse c1 – intersection
curve of the projecting cylindrical surface χ created by projecting lines of all points on
the circle and the plane of projection, see fig. 3.4. Two mutually perpendicular diameters
MN K PQ of the circle are projected as conjugated diameters M 1N 1 and P 1Q1 of the
ellipse.

Conjugated diameters MN and PQ of an ellipse are drawn in fig. 3.5 left. A diameter
of an ellipse is any straight line segment with the centre at the centre of the ellipse and
end points on the ellipse. Two diameters are called conjugated if tangent lines at end
points of one diameter are parallel with the other one, i.e. MN ‖ EF ^MN ‖ HG and
PQ ‖ EH ^ PQ ‖ FG. The parallelogram EFGH is called tangent parallelogram of the
ellipse. The ellipse is inscribed into its tangent parallelogram. Major and minor axis of
the ellipse represent a special case of perpendicular conjugated diameters, where the major
axis has maximal length and the minor axis has minimal length.

In the case of a circle (a special case of an ellipse), all diameters have the same length,
tangent parallelogram becomes tangent square and conjugated diameters are always per-
pendicular, see fig. 3.5 right.
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Figure 3.4: Parallel projection
of a circle

Figure 3.5: Conjugated diameters and tangent
parallelogram of an ellipse and circle

• Sphere σ is projected as an ellipse c1 and its interior area. Ellipse c1 is the intersection
curve of the projecting cylinder χ created by projecting lines of all points on the sphere
and the plane of projection, see fig. 3.6 a). In fact, ellipse c1 is a view of principal circle c
of sphere σ lying in the plane perpendicular to the direction of projection s. Since s M ρ,
the circle c is projected as ellipse c1, see section 4.2.2.



Additionally, the following special properties are valid for the parallel orthogonal projection.

• Parallel orthogonal projection shortens the length of straight line segments that are not
parallel with the plane of projection. It follows from ||A1B1|| “ ||AB|| cosα, where α is the
angle formed by straight line segment AB and its parallel orthogonal view A1B1.

• Two perpendicular lines are projected as perpendicular lines if at least one of the lines
is parallel to the plane of projection and none of them is perpendicular to the plane of
projection. To demonstrate this property, consider lines a K b, a ∦ s, b ∦ s, b ‖ ρ and
projecting plane α “ pa, a1q. Since a K b ^ b K s ñ b K α, b K α ^ a1 Ă α ñ b K a1, and,
finally, as b K a1 ^ b ‖ b1 ñ b1 ‖ a1.

• Orthogonal view of circle c “ pS, rq which does not lie in a projection plane is ellipse
c1 “ pS1, a “ 2r, bq with major axis a “ 2r lying on the view of principal line passing
through the centre S of the circle.

• Sphere σ is projected as circle c1 and its interior area. Circle c1 is the intersection curve of
the projecting cylinder χ created by projecting lines of all points on the sphere and plane
of projection, see fig. 3.6 b). In fact, circle c1 is a view of principal circle c of sphere σ
lying in the plane perpendicular to the direction of projection s. Since s K ρ, circle c is
projected as circle c1, see section 4.2.2.
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Figure 3.6: Parallel projection of a sphere

To obtain unambiguous parallel view of a three-dimensional object, it is necessary to deter-
mine the position of the plane of projection with respect to the chosen coordinate system and
give the rules of mapping. Usually, Cartesian coordinate system pO, x, y, zq with unit coordinate
vectors i “ p1, 0, 0q, j “ p0, 1, 0q and k “ p0, 0, 1q is considered. Three mutually perpendicular
coordinate axes x, y and z intersect at origin O. Coordinate planes are determined by axes
of coordinate system: horizontal plane π “ px, yq, frontal plane ν “ px, zq and profile plane
µ “ py, zq. Point A “ pxA, yA, zAq is orthogonally projected onto coordinate planes and the
top view A1 P π, front view A2 P ν and profile view A3 P µ are obtained as intersections of
projecting lines AA1 K π, AA2 K ν and AA3 K µ with the corresponding coordinate planes.



Due to the parallelism preserving property, the projecting lines are parallel with coordinate
axes, i.e. AA1 ‖ z, AA2 ‖ y and AA3 ‖ x, see fig. 3.7. Here, a sketch of the coordinate box
of point A “ pxA, yA, zAq is drawn. Coordinate box is axes-aligned box in the first octant
with one vertex at origin. The lengths of edges of a real coordinate box are equal to Cartesian
coordinates of the point. Depending on the type of projection, the lengths of projected edges
can be distorted.
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Figure 3.7: Coordinate box of point A “ pxA, yA, zAq

Various types of projection can be distinguished according to the position of the plane
of projection with respect to the coordinate system, number of planes of projection and the
angle of the direction of projection. Here, the following types of parallel projection are briefly
mentioned: Monge projection, orthogonal axonometry and its special variants isometry and
technical isometry, oblique projection and its special variant military perspective. To study
these methods in detail, see [1-4], for example.

3.2.1 Monge projection

Monge projection is parallel orthogonal projection onto two coordinate planes – horizontal plane
π “ px, yq and frontal plane ν “ px, zq. Each point A “ pxA, yA, zAq is represented by a pair of
adjacent views – the top view A1 “ pxA, yAq, i.e. the orthogonal projection of point A onto the
horizontal plane π and the front view A2 “ pxA, zAq, i.e. the orthogonal projection of point A
onto the frontal plane ν.

To obtain a two-dimensional drawing, one plane of projection is rotated about the common
intersection line (x-axis) by 90˝ to identify both planes with picture plane. Thus, a pair of
adjacent views in one picture plane is obtained, see fig. 3.8 left. The projection of x-axis is
called folding line. Since the top view x1 and the front view x2 of x-axis are identical, the
folding line is designated by x12. The coordinate system is created by folding line x12, the top
view y1 of y-axis and the front view z2 of z-axis. Since y K ν and z K π, the front view y2 as
well as the top view z1 are identical to origin O12. The orientation of axes of the right-handed
coordinate system is obvious from the figure.
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Figure 3.8: Point A “ p3, 2, 1q in Monge projection
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Figure 3.9: Top, front and profile views of corner brace

The plane given by point A, its top view A1 and front view A2 is perpendicular to x-axis,
see fig. 3.7. Therefore, it is projected as connection line A1A2 perpendicular to the folding line.
This connection line A1A2 is called ordinate.



Depending on the problem which has to be solved in Monge projection, it is not necessary
to draw all axes of the coordinate system, i.e. x12, y1 and z2. Usually, only folding line x12 is
drawn, see fig. 3.8 right.

Depending on the shape of the drawn object, more planes of projection can be used. An
example of top, front and profile view of corner brace from fig. 3.2 is drawn in fig. 3.9. Monge
projection is widely used in constructive geometry (see chapter 5 – chapter 7) and in technical
drawings due to the excellent properties of multiview orthogonal projection.

3.2.2 Orthogonal axonometry

Orthogonal axonometry (axonometry) is parallel orthogonal projection onto one axonomet-
ric plane of projection ρ in general position with respect to the Cartesian coordinate system
pO, x, y, zq. Axonometric plane of projection ρ intersects coordinate axes x, y and z at points

X “ ρX x, Y “ ρX y and Z “ ρX z,

vertices of axonometric triangle 4XY Z, and coordinate planes π “ px, yq, µ “ py, zq and
ν “ px, zq at straight lines

XY “ ρX π, Y Z “ ρX µ and ZX “ ρX ν,

edges of axonometric triangle 4XY Z, see fig. 3.10. The projection of origin O of coordinate
system is point O1 P ρ at orthocentre of axonometric triangle 4XY Z. Projection of coordinate
axes x, y and z are straight lines x1 “ O1X, y1 “ O1Y and z1 “ O1Z at altitudes of axonometric
triangle 4XY Z. The lengths ux, uy and uz of projected unit coordinate vectors are called
axonometric units. In general, axonometric units are not equal.
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Figure 3.10: Orthogonal axonometry Figure 3.11: Axonometric triangle
and coordinate system

Orthogonal axonometry has the following properties.

1. Axonometric triangle4XY Z is a triangle with all acute angles. It follows from the general
position of axonometric plane of projection ρ with respect to the Cartesian coordinate
system pO, x, y, zq.



2. Axonometric views of coordinate axes x1, y1 and z1 are lines at the altitudes of
axonometric triangle XY Z, i.e. x1 K Y Z, y1 K ZX and z1 K XY . To demonstrate
this property, consider x1 in fig. 3.10, for example. Now Y Z K OO1 (because OO1 ‖ s,
s K ρ and Y Z Ă ρ) and at the same time Y Z K XO (because XO Ă x, x K py, zq and
Y Z Ă py, zq). It follows that Y Z is perpendicular to the plane XOO1 and, consequently, it
is perpendicular to x1 because x1 Ă XOO1. Similarly, it is possible to show that y1 K ZX
and z1 K XY .

3. The angles formed by positive semi-axes x1, y1 and z1 are obtuse. This is the consequence
of the two previous properties.

To construct axonometric views of projected objects, axonometric plane of projection is
identified with the picture plane, see fig. 3.11. Orthogonal axonometry is uniquely defined by
acute angled axonometric triangle 4XY Z (axes x, y and z are constructed as altitudes of this
triangle without any special denotation) or by coordinate axes x, y and z forming obtuse angles
(edges of axonometric triangle are perpendicular to these axes).

After construction of coordinate system and axonometric triangle, it is necessary to determine
axonometric units ux, uy and uz. The procedure of axonometric units construction is based on
revolution of the coordinate plane into the axonometric plane of projection about the common
intersection line (the corresponding edge of axonometric triangle). After this revolution, all
figures in the rotated plane appear in true size. The trajectory of each point located in the
rotated plane is a circle with the centre on axis of revolution lying in the plane perpendicular
to the axis of revolution. Therefore, this trajectory is projected as a line perpendicular to the
corresponding edge of axonometric triangle. In particular, the procedure of construction of
axonometric units ux and uy consists of the following steps, see fig. 3.12.

1. Construct circle c given by diameter XY .

2. Construct rotated origin pOq, i.e. construct line perpendicular to XY passing through
O (extension of z-axis). Rotated origin pOq lies at the intersection of circle c and the
extended z-axis.

3. Construct rotated axes pxq “ pOqX and pyq “ pOqY and starting at pOq, draw straight
line segments of unit length u along pxq and pyq.

4. Rotate terminate points of unit segments back into the plane px, yq, i.e. construct lines
perpendicular to XY passing through terminate points of unit segments. Axonometric
units ux and uy are given by intersections of these perpendicular lines and axes x and y.

5. To obtain axonometric unit uz, it is necessary to rotate plane px, zq or py, zq into the
axonometric plane of projection, see fig. 3.12.

After construction of axonometric units, it is possible to draw equidistant tickmarks along
individual axes of axonometric coordinate system with the distance given by the corresponding
axonometric unit. Then, the axonometric view of any point given by Cartesian coordinates can
be simply drawn by means of scales on the projected coordinate axes, see fig. 3.13. Here, the
axonometric view of the coordinate box of point A “ pxA, yA, zAq “ p2, 3, 1q is drawn.

To obtain one to one correspondence between point A in three-dimensional space and its ax-
onometric view A1, it is not necessary to construct the whole coordinate box. The construction
of axonometric view A1 of the point itself and axonometric view of one of its orthogonal projec-
tions onto coordinate planes is sufficient. Usually, axonometric view of a point is complemented
by the axonometric view of its top view without using any special denotation, see fig. 3.14.



Corner brace given by orthogonal views in fig. 3.9 in axonometry (defined by axonomet-
ric triangle 4XY Z) is drawn in fig. 3.15. The dimensions parallel with coordinate axes are
shortened according to the corresponding axonometric units which have to be constructed. The
circles lying in coordinate planes (or in the planes parallel with coordinate planes) are projected
as ellipses. The length of major axis of each ellipse is equal to the diameter of the corresponding
circle. The major axis of each ellipse is axonometric view of the diameter of the circle parallel
with axonometric plane of projection, i.e. parallel with the corresponding edge of axonometric
triangle 4XY Z, and, consequently, perpendicular to the corresponding coordinate axis.
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Figure 3.12: Construction
of axonometric units

Figure 3.13: Coordinate box of point
A “ p2, 3, 1q in orthogonal axonometry
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Figure 3.14: Point A “ p2, 3, 1q in axonometry
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Figure 3.15: Corner brace in axonometry



Axonometry is widely used for 3D modelling of technical details in CAD (Computer Aided
Design) and CAM (Computer Aided Manufacturing) systems. The fact that the axonometric
units are generally not equal can be considered a disadvantage when drawing technical details in
axonometry by hand. This disadvantage is eliminated when the axonometric plane of projection
is placed in a special position with respect to the coordinate system, as is described in the
following section.

Isometry

Isometry is a special type of orthogonal axonometry where the axonometric plane of projection
ρ intersects axes of coordinate system at the same distances from origin. Consequently, isometry
has the following properties, see fig. 3.16.

1. Axonometric triangle 4XY Z is equilateral. It follows from the special position of axono-
metric plane of projection with respect to the coordinate system

2. The angles formed by positive semi-axes x1, y1 and z1 are equal to 120˝. It follows from
geometrical properties of an equilateral triangle.

3. All dimensions parallel with coordinate axes are shortened by the same ratio given by
isometry scale coefficient

k “

c

2

3
. (3.1)

1
2
0
°

45
°

60°120°

1
2
0
°

z

O

x

xxx

O

z

x

x y

y(   )

O

z'

z

z

1

3

2

1

1

O(   )

O(   )

(   )y

(   )O

y(   )
(   )x

x y

O

x O(   )

z

z

z
(   )O

x

O

z

z

y

O

y

Z

X Y

u

u

(   )

(   )

u

Z

(   )

u

X

c
u

ux yu

uz
u

Y

Y

d

S

Z

d'

X

Ay

A3

Ay'
YX

1A
xA

Ax' A

2A
A

Z

Az

(   )

(   )

(    )

(   ) (   )

ρ

y
y'

Y
x'

x
X i

xu

yu
j

O

kO'

zu

Z

z'
z

s ρ

Z

X Y

2

Figure 3.16: Isometry Figure 3.17: To the derivation of isometric
scaling coefficient

To derive the value of isometry scaling coefficient, consider situation depicted in fig. 3.17.
Here

k “
d1

d
. (3.2)

From the right angled triangle 4XOS we have

sin 60˝ “
‖ XS ‖
d1

ùñ d1 “
‖ XS ‖
sin 60˝

(3.3)



and from the right angled triangle 4XSpOq we have

sin 45˝ “
‖ XS ‖

d
ùñ d “

‖ XS ‖
sin 45˝

. (3.4)

After substitution eq. (3.3) and eq. (3.4) in eq. (3.2) and knowing that sin 60˝ “
?
3
2 and

sin 45˝ “
?
2
2 , we get eq. (3.1).

It is not necessary to construct axonometric units when drawing isometric views of objects in
isometry. Due to the same scaling coefficient, it is possible to multiply all Cartesian coordinates

of points by k “
b

2
3 (approximately k

.
“ 0.8) and measure shortened dimensions along axes of

isometric coordinate system. Thus, point A “ pxA, yA, zAq is projected into

A1 “ px1A, y
1
A, z

1
Aq “ pxA

b

2
3 , yA

b

2
3 , zA

b

2
3q, (3.5)

see example in fig. 3.18 a), where isometric view of point A “ p2, 3, 1q is drawn.
Figures lying in planes parallel with isometric plane of projection are projected in true size

as follows from properties of parallel projection. Thus, a sphere given by centre S “ pxS , yS , zSq
and radius r is projected into a circle with the centre

S1 “ pxS

b

2
3 , yS

b

2
3 , zS

b

2
3q

and radius r1 “ r. In fact, the projected circle is projection of the principal circle of the sphere
lying in the plane parallel with isometric plane of projection. Therefore, it is projected in true
size. Example of isometric view of the sphere with centre S “ p0, 0, 2q and radius r “ 2 is
drawn in fig. 3.18 b). Note that the distances between the tickmarks on coordinate axes are not

shortened by
b

2
3 in this picture.
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Figure 3.18: Coordinate box of point A “ p2, 3, 1q (left)
and sphere with centre S “ p0, 0, 2q and radius r “ 2 (right) in isometry



Technical isometry

Technical isometry or isometric drawing is an alternative of isometry when scaling coefficient
k “ 1. This alternative is widely used in mechanical engineering because the inconvenient

multiplication of coordinates by
b

2
3 is eliminated. Thus, point A “ pxA, yA, zAq is projected

into
A1 “ px1A, y

1
A, z

1
Aq “ pxA, yA, zAq, (3.6)

i.e. the coordinates are projected in true size. An example of point A “ p2, 3, 1q drawn in
technical isometry is given in fig. 3.19 a).

Figures lying in planes parallel with isometric plane of projection are projected in larger size,

i.e. multiplied by
b

3
2 (approximately 1.2), see example of technical isometry of a sphere with

centre S “ p0, 0, 2q and radius r “ 2 in fig. 3.19 b).
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Figure 3.19: Coordinate box of point A “ p2, 3, 1q (left)
and sphere with centre S “ p0, 0, 2q and radius r “ 2 (right) in technical isometry

Corner brace given by orthogonal views in fig. 3.9 in technical isometry is drawn in fig. 3.20.
The dimensions parallel with coordinate axes are projected in true sizes. The circles lying in
coordinate planes (or in planes parallel with coordinate planes) are projected as ellipses. The

length of major semi-axis of each ellipse is given by r
b

3
2 , where r is true size of the radius of

the corresponding circle. The major axis of each ellipse is perpendicular to the corresponding
coordinate axis (or parallel with the corresponding edge of isometric triangle which does not
have to be drawn).

Many other examples of objects drawn in isometry or technical isometry can be found in this
textbook in chapters describing problems of spatial analytic geometry and surfaces (quadratic
surfaces, surfaces of revolution, helicoidal surfaces, developable and transition surfaces and en-
velope surfaces).
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Figure 3.20: Corner brace in technical isomentry

3.2.3 Oblique projection

Oblique projection is a parallel projection onto profile plane µ “ py, zq where direction of pro-
jection s is not perpendicular to the profile plane of projection s M µ. The oblique view of
coordinate system pO1, x1, y1, z1q is constructed according to the following rules. Usually, the
direction of z1-axis is vertical. Since the plane of projection is identical to the profile plane µ,
right angle formed by y- and z-axes is preserved, i.e. y1 K z1. Obtuse angle ω “ =x1y1 is chosen,
see fig. 3.21 a).

The length of y- and z-coordinates of point A “ pxA, yA, zAq is preserved, i.e. y1A “ yA and
z1A “ zA. Since x ∦ µ, x-coordinate of point A is distorted. Depending on the chosen quotient
q of oblique projection, the projected x1-coordinate can be longer q ą 1, equal q “ 1 or shorter
q ă 1 than the true length, i.e. x1A “ qxA.

To be able to construct oblique view of any object, acute angle ω “ =y1z1 and quotient
q “ x1 : x have to be given. Example of coordinate box of point A “ p2, 3, 1q in oblique
projection pω “ 135˝, q “ 4 : 5q is drawn in fig. 3.21 b). Note that the distances between the
tickmarks on x1-axis are not shortened by q in this picture.

It is not necessary to draw the whole coordinate box when constructing oblique view of
a point. To obtain one to one correspondence between point A in three-dimensional space
and its oblique view A1, the oblique view A1 of the point itself and oblique view of one of its
orthogonal projections onto coordinate planes are necessary to construct. Usually, the oblique
view of point is complemented by the oblique view of its top view and no special notation for
oblique views of individual figures is used, see fig. 3.21 c) (the distances between the tickmarks
on x-axis are not shortened by q in this picture).
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Figure 3.22: Corner brace in oblique projection (ω “ 135˝, q “ 1 : 2)

Corner brace given by orthogonal views in fig. 3.9 in oblique projection pω “ 135˝, q “ 1 : 2q
is drawn in fig. 3.22. The dimensions parallel with coordinate y- and z-axes are projected in
true sizes. The dimensions parallel with coordinate x-axis are multiplied by q “ 1

2 . The circles
lying in the profile plane (or in the plane parallel with the profile plane) are projected as circles
with true radii without any distortion. The circles lying in the horizontal or frontal planes (or
in planes parallel with the horizontal or frontal planes) are projected as ellipses. Conjugated
diameters of each ellipse parallel with corresponding coordinate axes are oblique view of a pair
of mutually perpendicular diameters of the circle parallel with coordinate axes. The lengths of
conjugated diameters parallel with y- and z-axes are equal to the diameter of the corresponding
circle. The length of conjugated diameters parallel with x-axis are equal to 2qr, where r is radius
of the corresponding circle.



Oblique projection is useful for hand drawn sketches of many objects with the exception of
sphere, because sphere is projected as an ellipse and its interior area. Oblique projection is not
used in CAD/CAM systems just due to the distortion of spherical surfaces which could be felt
user-unfriendly in case the user is not familiar with properties of oblique projection.

Military perspective

Military perspective is a special type of oblique projection where the plane of projection is
horizontal plane π “ px, yq and the direction of projection s forms angle 45˝ with the plane
of projection =sπ “ 45˝. Since the plane of projection is identical to the horizontal plane π,
x- and y-coordinates of points are projected in true sizes. Moreover, as the angle of direction s
is 45˝, the z-coordinates are projected in true size, too. This property is obvious from fig. 3.23:
zA “ ||AA1|| “ ||A1A

1||, where A1 is the military perspective of point A “ pxA, yA, zAq.
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Figure 3.23: Projection of z-coordinates in military perspective
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Figure 3.24: Military perspective

The view of coordinate system pO1, x1, y1, z1q in military perspective is constructed accord-
ing to the following rules. The direction of z1-axis is vertical, angle ω “ =x1z1 is chosen
(ω ‰ 0˝, 90˝, 180˝, 270˝), right angle formed by x- and y-axes is preserved, i.e. x1 K y1, see
fig. 3.24 a). Dimensions in the direction of all three coordinate axes are projected in true size,



therefore the coordinate boxes of projected points can be easily drawn, see example in fig. 3.24 b)
and its simplification in fig. 3.24 c).

Corner brace given by orthogonal views in fig. 3.9 in military perspective is drawn in fig. 3.25.
The dimensions parallel with coordinate axes are projected in true sizes. The circles parallel
with the horizontal plane of projection are projected as circles with true radii without any
distortion. The circles lying in the frontal or profile planes (or in planes parallel with frontal
and profile planes) are projected as ellipses. Since the military perspective belongs to the oblique
projection, the properties of conjugated diameters of ellipses are determined by properties of
the above mentioned oblique projection.
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Figure 3.25: Corner brace in military perspective

3.2.4 Construction of parallel projection of a circle

In general, parallel projection of a circle is an ellipse, see properties of parallel projection on
page 62. Here, circle c “ pS, rq lying in principal or projecting plane is considered only. Two
mutually perpendicular diameters of the circle parallel with coordinate axes are projected into
the conjugated diameters of the ellipse. Depending on the type of projection, the lengths of the
projected figures are as follows.

• Monge projection – circles lying in the principal planes are drawn in fig. 3.26.

The top view of circle c “ pS, rq parallel with the horizontal plane of projection π is circle
c1 “ pS1, rq. The front view is the straight line segment c2 parallel with x12 of length equal
to 2r, see fig. 3.26 a).
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Figure 3.26: Circle in principal planes in Monge projection
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Figure 3.27: Circle in projecting planes in Monge projection



The top view of circle c “ pS, rq parallel with the frontal plane of projection ν is the
straight line c1 parallel with x12 of length equal to 2r. The front view is circle c2 “ pS2, rq,
see fig. 3.26 b).

Both the front view and the top view of circle c “ pS, rq parallel with the profile plane
of projection µ are straight line segments perpendicular to x12 of length equal to 2r, see
fig. 3.26 c).

Circles lying in the projecting planes ρ K π and ω K ν are drawn in fig. 3.27.

The top view of circle c “ pS, rq lying in the plane ρ K π is straight line C1D1 Ă ρ1 of
length 2r. The front view is the ellipse determined by major axis A2B2 K x12 of length
2r and minor axis C2D2 K A2B2. The positions of minor vertices are given by ordinates
constructed from top views C1 and D1, i.e. C1C2, D1D2 K x12, see fig. 3.27 a). This ellipse
can be approximated by means of osculation circles (see section 3.2.4) or constructed by
means of parallelogram method (see section 3.2.4), for example.

The front view of circle c “ pS, rq lying in the plane ω K ν is straight line C2D2 Ă ω2

of length 2r. The top view is the ellipse determined by major axis A1B1 K x12 of length
2r and minor axis C1D1 K A1B1. The positions of minor vertices are given by ordinates
constructed from top views C2 and D2, i.e. C1C2, D1D2 K x12, see fig. 3.27 b). This ellipse
can be approximated by osculation circles (see section 3.2.4) or constructed by means of
parallelogram method (see section 3.2.4), for example.

• Axonometry – conjugated diameters of the ellipse, i.e. the projection of two mutually
perpendicular diameters of a circle parallel with coordinate axes are shortened according to
the axonometric units. The diameter parallel with the axonometric plane of projection is
projected in true size (i.e. the length of major axis of the ellipse is equal to 2r). The ellipse
can be constructed by means of parallelogram method (see section 3.2.4), for example.

• Isometry – conjugated diameters of the ellipse, i.e. the projection of two mutually per-

pendicular diameters of a circle parallel with coordinate axes are shortened by
b

2
3 . The

diameter parallel with the isometric plane of projection is projected in true size (i.e. the
length of the major axis of the ellipse is equal to 2r). The ellipse can be constructed by
means of parallelogram method (see section 3.2.4), for example.

• Technical isometry – conjugated diameters of the ellipse, i.e. the projection of two
mutually perpendicular diameters of the circle parallel with coordinate axes are projected
in true size (i.e. their length is equal to 2r), the diameter parallel with the isometric plane

of projection is elongated by
b

3
2 . The ellipse can be constructed by means of parallelogram

method (see section 3.2.4), for example.

• Oblique projection – conjugated diameters of the ellipse, i.e. the projection of two
mutually perpendicular diameters of a circle parallel with y´ or z´axes are projected in
true size. If the diameter is parallel with x-axis, its projected length is equal to 2qr, where
q is the given quotient of oblique projection. The ellipse can be constructed by means of
parallelogram method. Circles lying in planes parallel with profile plane µ are projected
as circles without any distortion.

• Military perspective – conjugated diameters of the ellipse, i.e. the projection of two
mutually perpendicular diameters of a circle parallel with all coordinate axes are projected
in true size (i.e. their length is equal to 2r). The ellipse can be constructed by means of



parallelogram method. Circles lying in planes parallel with horizontal plane π are projected
as circles without any distortion.

Approximation of an ellipse by means of osculation circles

Ellipse is approximated by four osculation circles with point of contact at vertices of the ellipse.
Construction of osculation circles of the ellipse can be used when major axis AB and major axis
CD of the ellipse are given. The procedure is as follows, see fig. 3.28.

1. Given axes AB, CD, construct rectangle ASDV , S “ AB X CD.

2. Draw diagonal AD of rectangle ASDV .

3. Construct straight line p K AD, V P p.

4. Centers of osculation circles K “ pXAB and K 1 “ pX CD.

5. Draw osculation circles k “ pK,R “ ||KA||q and k1 “ pK 1, R1 “ ||K 1D||q.

6. Using symmetry with respect to the centre S of the ellipse, construct osculation circles
l “ pL,R “ ||KA||q and l1 “ pL1, R1 “ ||K 1D||q.

7. Approximate the ellipse by osculation circles in the neighbourhood of vertices and estimate
the shape of ellipse in the neighbourhood of intersection of ellipse with the straight line p.
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Figure 3.28: Approximation of an ellipse by means of osculation circles

Parallelogram construction of an ellipse

The parallelogram method (partition construction) can be used when conjugated diameters of
the ellipse or its tangent parallelogram are given. In fig. 3.29 the parallelogram method (partition
construction) is depicted. The procedure of construction is as follows.

1. If conjugated diameters MN and PQ (or the major and minor axes) of the ellipse are
given, construct corresponding tangent parallelogram (or tangent rectangle) EFGH. If
tangent parallelogram EFGH of the ellipse is given, construct corresponding conjugated
diameters MN and PQ.



2. Consider sub-parallelogram MSQE, for example. Divide the distance between EQ and
SQ into the same number of equal parts. In fig. 3.29 left, the segments EQ and SQ are
divided into 4 parts, therefore points 1, 2, 3 and 1’, 2’, 3’ are obtained, respectively.

3. Connect point M with dividing points on EQ segment, i.e. draw lines M1, M2, M3.

4. Connect point N with dividing points on SQ segment, i.e. draw lines N11, N21, N31.

5. Points on ellipse lie at intersections of the connecting lines, i.e. L1 “ M1 X N11, L2 “

M2XN21 and L3 “M3XN31.

6. Consider the other sub-parallelograms SNHQ, FPSM and PGNS. Proceed in a similar
way to obtain points along the whole circumference of the ellipse, see fig. 3.29 right.

7. Draw the ellipse as a curve passing through all constructed points.
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Figure 3.29: Construction of ellipse by means of parallelogram method



Chapter 4

Analytic geometry

Analytic geometry uses algebra to solve problems in geometry. Geometrical figures are rep-
resented by algebraic equations and their position is represented analytically by coordinates.
A brief overview of basic vector operations is given in this chapter firstly. After that, ana-
lytic representations of straight line, conic sections, plane and quadratic surfaces is presented.
Geometrical interpretation of analytic expression of individual figures is simultaneously demon-
strated in examples.

Note that in following analytic representation, all points are considered in vector form and
denoted as vectors, i.e. A “ p1, 2, 3q.

4.1 Vectors

Two points A “ pxA, yA, zAq and B “ pxB, yB, zBq define a directed line segment
ÝÝÑ
AB extending

from point A to point B. A directed line segment corresponds to vector u

u “
ÝÝÑ
AB “ pxB ´ xA, yB ´ yA, zB ´ zAq “ pu1, u2, u3q (4.1)

which extends from point A to point B. Point A is often called the tail of vector u, point B is
called the head of vector u. The radius vector of point A is a vector with the tail at the origin
and the head at point A.

Magnitude ||u|| of vector u is equal to the distance of points A and B

||u|| “ ||AB|| “
a

pxB ´ xAq2 ` pyB ´ yAq2 ` pzB ´ zAq2 “
b

u21 ` u
2
2 ` u

2
3.

Vectors u “ pu1, u2, u3q and v “ pv1, v2, v3q are linearly dependent if one of the vectors is
linear combination of the other

u “ kv, i.e. u1 “ kv1, u2 “ kv2, u3 “ kv3,

where k is a real number.
Vectors u and v are called opposite vectors if u “ ´v.
Angle ϕ formed by vectors u and v is angle 0 ď ϕ ď π formed by oriented straight line

segments by means of which the vectors u and v are depicted.
Dot product of vectors u and v is given by

u ¨ v “ u1v1 ` u2v2 ` u3v3 “ ||u|| ¨ ||v|| cosϕ. (4.2)

Dot product is useful for calculation of angle ϕ formed by two vectors u and v

cosϕ “
u ¨ v

||u|| ¨ ||v||
“
u1v1 ` u2v2 ` u3v3

||u|| ¨ ||v||
. (4.3)

81



Two nonzero vectors are orthogonal (perpendicular to each other) if their dot product is equal
to zero.

Cross product of vectors u and v is given by

uˆ v “ ipu2v3 ´ u3v2q ` jpu3v1 ´ u1v3q ` kpu1v2 ´ u2v1q.

It can be written in a shorthand notation that takes the form of a determinant

uˆ v “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Vector w “ uˆ v is perpendicular to both vectors u and v with the orientation determined by
the right-hand rule. Magnitude of cross product given by

||uˆ v|| “ ||u|| ¨ ||v|| sinϕ

represents a number equal to the area of a parallelogram, sides of which are given by the vectors
u and v.

Scalar triple product (mixed product) of three vectors u, v and w is given by

ru,v,ws “ u ¨ pv ˆwq “ v ¨ pw ˆ uq “ w ¨ puˆ vq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

The volume of a parallelepiped whose sides are given by the vectors u, v and w is equal to
the absolute value of the scalar triple product of these vectors.

Vparallelepiped “ |ru,v,ws|.

The volume of a tetrahedron whose sides are given by the vectors u, v and w is equal to one
sixth of absolute value of the scalar triple product of these vectors.

Vtetrahedron “
1
6 |ru,v,ws|.

4.2 Planar analytic geometry

4.2.1 Straight line in two-dimensional space

A straight line AB is unambiguously determined by two different points A ‰ B. In E2, a straight
line can be analytically expressed by the following equations: vector, parametric, slope, intercept
and general. Geometrical meaning of all these forms (see below) is obvious from fig. 4.1.

Vector equation

Vector equation of a straight line given by two points A “ pxA, yAq and
B “ pxB, yBq has the following form

Pptq “ A` u ¨ t, t P R,
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Figure 4.1: Straight line in two-dimensional space

where Pptq is univariate vector function, t is parameter and u “ pu1, u2q is direction vector given
by eq. (4.1). Coordinates of vector function Pptq are coordinate functions xptq and yptq

Pptq “ pxptq, yptqq “ pxA ` u1t, yA ` u2tq, t P R. (4.4)

By substituting t P R in eq. (4.4), we get any point on straight line AB. In particular, Pp0q “ A,
Pp1q “ B. Points located on half-line l with origin A, B R l, are obtained for t ă 0 and points
located on half-line m with origin B, A R m, are obtained for t ą 1. It is possible to express
any straight line in E2 by means of vector equation.

Parametric equations

Parametric equations of straight line given by two points A “ pxA, yAq and B “ pxB, yBq are
coordinate functions of vector function given by eq. (4.4), i.e

xptq “ xA ` u1t,

yptq “ yA ` u2t, t P R, (4.5)

where u “ pu1, u2q is direction vector given by eq. (4.1) and t is parameter. By substituting
t P R in eq. (4.5), we get any point on straight line. It is possible to express any straight line in
E2 by means of parametric equations.

Slope equation

Slope equation of straight line given by two points A “ pxA, yAq and B “ pxB, yBq is as follows

y “ kx` q, x P R, (4.6)

where x is the independent variable, y is the dependent variable, k is the slope of straight line
given by

k “ tanpαq “
yB ´ yA
xB ´ xA

“
u2
u1
, u1 ‰ 0, (4.7)



α is an angle formed by straight line and x-axis of the coordinate system and q is y-intercept
(the point where straight line crosses y-axis). For k “ 0, the straight line is parallel with x-axis.
For k ă 0, the straight line slants downward to the right. For k ą 0, the straight line slants
upward to the right. It is impossible to express straight lines parallel with y-axis by means of
slope equation due to the condition u1 ‰ 0.

Intercept equation

Intercept equation of straight line given by two points A “ pxA, yAq and B “ pxB, yBq has the
following form

x

p
`
y

q
“ 1, p ‰ 0^ q ‰ 0, (4.8)

where p is x-intercept (the point where straight line crosses x-axis) and q is y-intercept. A straight
line passing through origin of coordinate system cannot be expressed in intercept form because
although the intercepts exists (p “ q “ 0), it is impossible to substitute p “ q “ 0 into eq. (4.8).

General equation

General equation of straight line given by two points A “ pxA, yAq and B “ pxB, yBq has the
following form

ax` by ` c “ 0, (4.9)

where a and b are the coordinates of normal vector n “ pa, bq of the straight line. Since n K u,
dot product u ¨ n given by eq. (4.2) can be applied to obtain the coordinates of two opposite
normal vectors

n “ p´u2, u1q or n˚ “ pu2,´u1q. (4.10)

By substituting eq. (4.10) in eq. (4.9), the value c or c˚ can be determined

c “ u2xA ´ u1yA or c˚ “ ´u2xA ` u1yA. (4.11)

Geometrical meaning of c follows from

c “
dpAB,Oq

||n||
,

where dpAB,Oq is the normal distance of straight line AB from the origin of coordinate system.
It is possible to express any straight line by means of general equation in E2.

4.2.2 Conic sections

Conic sections are second-order algebraic curves (the sets of roots of polynomial fpx, yq “ 0)
given by the following general equation

a11x
2 ` a22y

2 ` 2a12xy ` 2a13x` 2a23y ` a33 “ 0, (4.12)

where aij P R and pa11, a22, a12q ‰ 0. Conic section is called regular if the matrix of coefficients
¨

˚

˚

˚

˝

a11 a12 a13

a12 a22 a23

a13 a23 a33

˛

‹

‹

‹

‚



is regular. Otherwise, the conic section is called singular. Circle, ellipse, hyperbola and parabola
belong to the regular conic sections. A pair of straight lines (intersecting or identical) or a point
belong to the singular conic sections.

If a12 “ 0, the conic section is in axes-aligned position, i.e. the axes of conic section are
parallel with the axes of coordinate system. In this case, it is easy to turn the general eq. (4.12)
into canonical form by completing the square and determine the type and characteristic features
(Cartesian coordinates of centre (or vertex) and length of semiaxes) of conic section.

Conic sections can be obtained as intersection curves of a plane and cone of revolution. If
the vertex of the cone does not lie at infinity and section plane does not pass through the vertex
of the cone, the intersection curve is a regular conic section, see fig. 4.2. Otherwise, a singular
conic section is obtained. Depending on the angle β formed by section plane and revolution axis
of the cone, the individual types of conic sections are obtained: circle for β “ 90˝, ellipse for
β ą α, parabola for β “ α and hyperbola for β ă α, where α is a half of vertex angle of the
cone.

In the following, a brief review of geometric definitions, canonical equations in general form
and graphical examples of regular conic sections is given.

αα α

β

α

ββ β

circle, β “ 90˝ ellipse, β ą α parabola, β “ α hyperbola, β ă α

Figure 4.2: Conic sections



Circle

A circle is a set of points in a plane whose distance r (radius) from a fixed point S (centre) is
constant, see fig. 4.3. If the centre is given by Cartesian coordinates in px, yq plane S “ pm,nq,
the equation of the circle is

px´mq2 ` py ´ nq2 “ r2.

The lower and upper semicircle is given by

y “ n`
a

r2 ´ px´mq2 and y “ n´
a

r2 ´ px´mq2,

respectively. The right and left semicircle is given by

x “ m`
a

r2 ´ py ´ nq2 and x “ m´
a

r2 ´ py ´ nq2,

respectively.

Circle, S “ p4, 3q, r “ 2 Lower semicircle, S “ p4, 3q, r “ 2

px´ 4q2 ` py ´ 3q2 “ 4 y “ 3´
a

4´ px´ 4q2
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Figure 4.3: Circle

Ellipse

An ellipse is a set of points in a plane the sum of whose distances from two fixed points F1 and
F2 (the foci) is equal to the length of major axis of the ellipse, see fig. 4.4.

The equation of an ellipse with axes of symmetry parallel with the axes of coordinate system
is given by

px´mq2

a2
`
py ´ nq2

b2
“ 1, (4.13)

where S “ pm,nq is the centre of the ellipse, a ‖ x and b ‖ y are the semiaxes of the ellipse.
Note that in eq. (4.13), semiaxis a is always supposed to be parallel with x-axis and semiaxis b
parallel with y-axis, no matter which semiaxis is longer.



Ellipse, S “ p4, 3q, a “ 2, b “ 1 Ellipse, S “ p4, 3q, a “ 1, b “ 2

px´ 4q2

4
` py ´ 3q2 “ 1 px´ 4q2 `

py ´ 3q2

4
“ 1

S

F

F

F

F

S

FF

S

S

3

2

0

a
b

3

2

1

543210 x6

y

4

5

1 2

3

2

1

543210 x6

y

4

5

r

2

1

2

1

b

a

42

-1

-2

-3

3

2

1

510 x6

y

4

5 5

4

y

6 x0 1 3 5

1

2

3

-3

-2

-1

2 4

a

b

1 2

b

a

5

4

y

6 x0 1 2 3 4 5

1

r

5

4

y

6 x1 2 3 4 5

1

2

3

F

F

3

S

S

S

F

F

F

F

S

FF

S

S

3

2

0

a
b

3

2

1

543210 x6

y

4

5

1 2

3

2

1

543210 x6

y

4

5

r

2

1

2

1

b

a

42

-1

-2

-3

3

2

1

510 x6

y

4

5 5

4

y

6 x0 1 3 5

1

2

3

-3

-2

-1

2 4

a

b

1 2

b

a

5

4

y

6 x0 1 2 3 4 5

1

r

5

4

y

6 x1 2 3 4 5

1

2

3

F

F

3

S

S

Figure 4.4: Ellipse

Hyperbola

A hyperbola is a set of points in a plane the difference of whose distances from two fixed points
F1 and F2 (the foci) is equal to the length of the major axis of the hyperbola.

If the axes of symmetry of a hyperbola are parallel with the axes of coordinate system, see
fig. 4.5, the equation of hyperbola is

px´mq2

a2
´
py ´ nq2

b2
“ 1, F1F2 ‖ x (4.14)

or

´
px´mq2

a2
`
py ´ nq2

b2
“ 1, F1F2 ‖ y, (4.15)

where S “ pm,nq is the centre of the hyperbola, a ‖ x and b ‖ y are the semiaxes of the
hyperbola.

Note that in eq. (4.14) and eq. (4.15), semiaxis a is always supposed to be parallel with
x-axis and semiaxis b parallel with y-axis, no matter which semiaxis is longer.

If axes of hyperbola are of the same length a “ b and the angle ϕ formed by F1F2 and x-axis
is 45˝ or 135˝, i.e. asymptotes of hyperbola are parallel with the axes of coordinate system, see
fig. 4.6, the equation of hyperbola is

y ´ n “
k

x´m
, ϕ “ 45˝,

or

y ´ n “ ´
k

x´m
, ϕ “ 135˝,

where k “
1

2
a2.
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Figure 4.5: Hyperbola (axes of symmetry parallel with the axes of coordinate system)
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Parabola

A parabola is a set of points in a plane that are equidistant from a fixed point F (focus) and
a fixed straight line d (directrix), see fig. 4.7. The point halfway between the focus and the
directrix is called vertex V od parabola. The equation of parabola with the axis of symmetry
parallel with an axis of coordinate system is

px´mq2 “ 2ppy ´ nq, VF ‖ `y,
px´mq2 “ ´2ppy ´ nq, VF ‖ ´y,
py ´ nq2 “ 2ppx´mq, VF ‖ `x,
py ´ nq2 “ ´2ppx´mq, VF ‖ ´x,

where V “ pm,nq and p is the distance between the focus and directrix.
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Figure 4.7: Parabola



4.3 Spatial analytic geometry

4.3.1 Straight line in three-dimensional space

In E3, a straight line can be analytically expressed by a vector equation or parametric equations.
Vector equation of straight line determined by two points A “ pxA, yA, zAq and B “ pxB, yB, zBq
is given by

Pptq “ A` u ¨ t, t P R,

where Pptq is univariate vector function, u is direction vector of straight line given by eq. (4.1)
and t is parameter. Function value of Pptq is radius vector of a point located on the straight
line. Coordinates of Pptq are univariate coordinate functions xptq, yptq and zptq

Pptq “ pxptq, yptq, zptqq “ pxA ` u1 ¨ t, yA ` u2 ¨ t, zA ` u3 ¨ tq , t P R. (4.16)

Parametric equations of a straight line are given by coordinate functions

xptq “ xA ` u1 ¨ t,

yptq “ yA ` u2 ¨ t,

zptq “ zA ` u3 ¨ t, t P R.

(4.17)

After substitution t “ 0 in eq. (4.16) or in eq. (4.17), we obtain Cartesian coordinates of
point A. i.e. Pp0q “ A. Similarly, Pp1q “ B. For t ă 0 we obtain points on half-line l with
origin A, B R l; for t ą 1 we obtain points on half-line m with origin B, A R m, see example in
fig. 4.8.
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Figure 4.8: Straight line in three-dimensional space

4.3.2 Plane

A plane is unambiguously determined by three noncollinear points in E3. In this section, the
following forms of analytic expression of a plane are mentioned: vector equation, parametric
equations, general equation and intercept equation.



Vector equation of a plane

Vector equation of a plane determined by three points A “ pxA, yA, zAq, B “ pxB, yB, zBq and
C “ pxC, yC, zCq is given by

Pps, tq “ A` u ¨ s` v ¨ t, ps, tq P R2,

where Pps, tq is bivariate vector function, u “
ÝÝÑ
AB and v “

ÝÝÑ
AC are linearly independent

direction vectors and t and s are parameters. Function value of Pps, tq is radius vector of
a point located on the plane. Coordinates of Pps, tq are bivariate functions xps, tq, yps, tq and
zps, tq.

Pps, tq “ pxps, tq, yps, tq, zps, tqq “

“ pxA ` u1 ¨ s` v1 ¨ t, yA ` u2 ¨ s` v2 ¨ t, zA ` u3 ¨ s` v3 ¨ tq , px, tq P R
2.

(4.18)

It is possible to express any plane in E3 by means of vector equation.

Parametric equations of a plane

Parametric equations are given by coordinate functions

xps, tq “ xA ` u1 ¨ s` v1 ¨ t,

yps, tq “ yA ` u2 ¨ s` v2 ¨ t,

zps, tq “ zA ` u3 ¨ s` v3 ¨ t, ps, tq P R
2.

(4.19)

After substitution ps, tq “ p0, 0q in eq. (4.18) or in eq. (4.19), we obtain Cartesian coordinates
of point A, i.e. Pp0, 0q “ A. Similarly, Pp0, 1q “ B and Pp1, 0q “ C, see example in fig. 4.9.
Here, the plane given by points A “ p2, 1, 3q, B “ p4, 2, 1q and C “ p1, 4, 2q is drawn in technical
isometry. The plane is represented by intersecting lines (traces) with coordinate planes px, yq,
py, zq and px, zq in the first octant of the space. Any point located on the plane can be obtained
by substitution of suitable pair of parameter values. For example, point D “ p3, 5, 0q whose
coordinates are obtained as function value Pp1, 1q is depicted in fig. 4.9. It is possible to express
any plane in E3 by means of parametric equations.

General equation of a plane

General equation of a plane is given by

ax` by ` cz ` d “ 0, (4.20)

where

n “ pa, b, cq “ uˆ v (4.21)

is normal vector of the plane, the distance between the plane and origin O is given by d
‖n‖ and

x, y and z are variables. It is possible to express any plane in E3 by means of general equation.
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Figure 4.9: Plane in three-dimensional space

Intercept equation of a plane

Intercept equation of a plane is given by

x

p
`
y

q
`
z

r
“ 1, (4.22)

where p, q and r is x-intercept, y-intercept and z-intercept of the plane in the given order, x,
y and z are variables. Intercept equation is very useful for plane drawing by means of traces,
see fig. 4.9. It is impossible to express a plane passing through origin by means of intercept
equation, because p “ q “ r “ 0.

4.4 Mutual relationship of points, lines and planes

From the point of view of applications, it is very important to know mutual relationship of
geometrical figures in two or three-dimensional space, for example, to be able to detect unac-
ceptable collisions of the figures analysed. In the following of this section, a brief list of rules
based on geometrical properties of points, lines and planes which can be used to recognize the
relationship among these figures is given.

Two points

Consider two points A “ pxA, yA, zAq and B “ pxB, yB, zBq. These points can be



• Identical: A “ B if their corresponding coordinates are equal

A “ B ô xA “ xB ^ yA “ yB ^ zA “ zB.

• Different: A ‰ B if at least one of the following inequalities is valid

xA ‰ xB, yA ‰ yB, zA ‰ zB.

Point and line

Consider point M “ pxM, yM, zMq and straight line m: Pptq “ A ` u ¨ t. Mutual position of
these figures can be as follows.

• Incidence: M P m, if coordinates of point M satisfy the equation of line m

M P m ô xM “ xA ` u1 ¨ t ^ yM “ yA ` u2 ¨ t ^ zM “ zA ` u3 ¨ t.

We can say that line m is incident to point M or point M belongs to line m or line m
passes through point M.

• No incidence: M R m if coordinates of point M do not satisfy the equation of line m.

The distance dpM,mq between point M and line m is given by

dpM,mq “
||uˆ

ÝÝÑ
AM||

||u||
.

Two lines

Consider two straight lines m: Pptq “ A` u ¨ t and n: Rpsq “ B` v ¨ s. These lines can be

• Identical: m “ n if their direction vectors u and v are linearly dependent and A P n (or
B P m).

• Parallel: m ‖ n if their direction vectors u and v are linearly dependent and A R n (or
B R m).

• Intersecting: if their direction vectors u and v are linearly independent and
ru,v,ABs “ 0.

• Skew: if their direction vectors u and v are linearly independent and ru,v,ABs ‰ 0.

The angle formed by lines m and n is given by the angle of their direction vectors eq. (4.3).

Point and plane

Consider point M “ pxM, yM, zMq and plane ρ: Pps, tq “ A ` u ¨ s ` v ¨ t. Mutual position of
these figures can be as follows.

• Incidence: M P ρ if coordinates of point M satisfy the equation of plane ρ

M P ρ ô xM “ xA`u1 ¨ s` v1 ¨ t ^ yM “ yA`u2 ¨ s` v2 ¨ t ^ zM “ zA`u3 ¨ s` v3 ¨ t.

• No incidence: M R ρ if coordinates of point M do not satisfy the equation of plane ρ.



The distance dpM, ρq between point M and plane ρ is given by

dpM, ρq “
|n ¨

ÝÝÑ
AM|

||n||
,

where n “ uˆ v is normal vector of plane ρ. If the plane is expressed by general equation, it is
possible to calculate the distance dpM, ρq according to the formula

dpM, ρq “
|axM ` byM ` czM ` d|

?
a2 ` b2 ` c2

.

Line and plane

Consider line m: Pptq “ A ` u ¨ t and plane ρ with normal vector n. Mutual position of these
figures can be as follows.

• Incidence: m Ă ρ if vectors u and n are perpendicular u K n and A P ρ.

• Parallel: m ‖ ρ if vectors u and n are perpendicular u K n and A R ρ.

• Intersecting: if vectors u and n are not perpendicular u M n.

The angle formed by line m and plane ρ is given by the angle formed by line m and its
orthogonal projection onto the plane ρ.

Two planes

Consider plane ρ with normal vector n and plane σ with normal vector m. Mutual position of
these figures can be as follows.

• Identical: ρ “ σ if vectors n and m are linearly dependent and A P σ (or B P ρ).

• Parallel: ρ ‖ σ if vectors n and m are linearly dependent and A R σ (or B R ρ).

• Intersecting: if vectors n and m are linearly independent.

The angle formed by planes ρ and σ is given by the angle formed by their normal vectors.

4.5 Quadratic surfaces

Quadratic surfaces (quadrics) are second-order algebraic surfaces (the sets of roots of polynomial
fpx, y, zq “ 0) given by the following general equation

a11x
2 ` a22y

2 ` a33z
2 ` 2pa12xy ` a13xz ` a23yzq ` 2pa14x` a24y ` a34zq ` a44 “ 0, (4.23)

where aij P R and pa11, a22, a33, a12, a13, a23 ‰ 0. Quadratic surface is called regular if the matrix
of coefficients

¨

˚

˚

˚

˚

˚

˚

˝

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

˛

‹

‹

‹

‹

‹

‹

‚



is regular. Otherwise, the quadratic surface is called singular. Sphere, ellipsoid, hyperboloid and
paraboloid belong to the regular quadratic surfaces, cylinder, cone and a par of planes belong
to the singular quadratic surfaces. Quadratic surface intersects every plane in conic section.

If pa12, a13, a23q “ 0, the quadratic surface is in axes-aligned position, i.e. the axes of
quadratic surface are parallel with the axes of coordinate system. Similarly to the case of conic
sections, it is easy to turn the general eq. (4.23) into canonical form by completing the square
and determine the type and characteristic features of quadratic surfaces.

In the following, a brief review of canonical equations and graphical examples of sphere,
ellipsoid, hyperboloid, paraboloid, cone and cylinder in axes-aligned position is given.

4.5.1 Sphere

The equation of a sphere given by centre S “ pm,n, pq and radius r, has the following form

px´mq2 ` py ´ nq2 ` pz ´ pq2 “ r2.

Intersection of a sphere and planes passing through the centre S parallel with the coordinate
planes are principal circles with radius r, see fig. 4.10, where a sphere with centre at origin is
drawn in top, front, profile and isometric views.
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Figure 4.10: Sphere

4.5.2 Ellipsoid

The equation of an ellipsoid given by centre S “ pm,n, pq and semiaxes a ‖ x, b ‖ y and c ‖ z is

px´mq2

a2
`
py ´ nq2

b2
`
pz ´ pq2

c2
“ 1.

There are the following types of ellipsoid.

• a ‰ b ‰ c: the ellipsoid is called three-axial. The intersection of three-axial ellipsoid and
planes passing through the centre S parallel with the coordinate planes are ellipses, see
fig. 4.11 a).



• a “ b, b “ c or a “ c: the ellipsoid is called ellipsoid of revolution with axis of revolution
parallel with z-, x- or y-axis in the given order. The intersection of ellipsoid of revolution
and plane passing through the centre S perpendicular to the axis of revolution is a circle.
Example of ellipsoid of revolution is given in fig. 4.11 b).

• a “ b “ c: the ellipsoid becomes a sphere.
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Figure 4.11: Three-axial ellipsoid and ellipsoid of revolution

4.5.3 Hyperboloid

A one-sheeted hyperboloid (hyperboloid of one sheet) is given by centre S “ pm,n, pq and semiaxes
a ‖ x, b ‖ y and c ‖ z. If the axis of a one-sheeted hyperboloid is parallel with x, y or z-axis, the
one-sheeted hyperboloid has the following equation

´
px´mq2

a2
`
py ´ nq2

b2
`
pz ´ pq2

c2
“ 1,

px´mq2

a2
´
py ´ nq2

b2
`
pz ´ pq2

c2
“ 1,

px´mq2

a2
`
py ´ nq2

b2
´
pz ´ pq2

c2
“ 1,

see examples in fig. 4.12, fig. 4.13 a) or fig. 4.13 b) in the given order.

There are the following types of one-sheeted hyperboloid.

• a ‰ b ‰ c: the one-sheeted hyperboloid is called one-sheeted elliptic hyperboloid. Depend-
ing on position of axis of hyperboloid, intersections of one-sheeted hyperboloid and planes
passing through the centre S parallel with the coordinate planes are two hyperbolas and
one ellipse, see example in fig. 4.12.
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Figure 4.12: One-sheeted elliptic hyperboloid

• a “ b, b “ c or a “ c: the one-sheeted hyperboloid is called one-sheeted hyperboloid of
revolution with axis of revolution parallel with z, x or y-axis in the given order. Example
of one-sheeted hyperboloid of revolution with a “ b is drawn in fig. 4.13 c). One-sheeted
hyperboloid of revolution can be generated by rotating a hyperbola about bisector of line
F1F2 or by rotating a skew straight line about the line F1F2, see section 4.2.2.
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Figure 4.13: One-sheeted hyperboloids



A two-sheeted hyperboloid (hyperboloid of two sheets) is given by centre S and semiaxes a ‖ x,
b ‖ y and c ‖ z. If the axis of a two-sheeted hyperboloid is parallel with x-, y- or z-axis, the
two-sheeted hyperboloid has the following equation

px´mq2

a2
´
py ´ nq2

b2
´
pz ´ pq2

c2
“ 1,

´
px´mq2

a2
`
py ´ nq2

b2
´
pz ´ pq2

c2
“ 1,

´
px´mq2

a2
´
py ´ nq2

b2
`
pz ´ pq2

c2
“ 1,

see examples in fig. 4.14, fig. 4.15 a) or fig. 4.15 b) in the given order.
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Figure 4.14: Two-sheeted elliptic hyperboloid
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Figure 4.15: Two-sheeted hyperboloids



There are the following types of two-sheeted hyperboloid.

• a ‰ b ‰ c: the two-sheeted hyperboloid is called two-sheeted elliptic hyperboloid. Depend-
ing on position of axis of hyperboloid, intersections of two-sheeted hyperboloid and planes
passing through the centre S parallel with the coordinate planes are two hyperbolas and
one ellipse, see example in fig. 4.14.

• a “ b, b “ c or a “ c: the two-sheeted hyperboloid is called two-sheeted hyperboloid of
revolution with axis of revolution parallel with z, x or y-axis in the given order. Example
of two-sheeted hyperboloid of revolution with a “ b is drawn in fig. 4.15 c). Two-sheeted
hyperboloid of revolution can be generated by rotating a hyperbola about the line F1F2,
see section 4.2.2.

4.5.4 Cone

In general, a cone is a set of generating lines passing through vertex and every point of directing
curve, see chapter 8. If the directing curve is an ellipse and the straight line given by the vertex
and the centre of ellipse is perpendicular to the director plane of the ellipse, the cone is called
elliptic, see examples in fig. 4.16, fig. 4.17 a) and fig. 4.17 b). Elliptic cone is given by vertex
V “ pm,n, pq, height VS (VS “ a, VS “ b or VS “ c) and two semiaxes (b and c, a and c or a
and b). Height is the distance between the vertex V of the cone and the centre S of the ellipse
with the given semiaxes. This ellipse is the intersection curve between the cone and the plane
passing through the centre S perpendicularly to the axis of the cone.
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Figure 4.16: Elliptic cone

Depending on the position of the axis VS Ă o of the cone with respect to the coordinate
axes, the equation of the cone is as follows

´
px´mq2

a2
`
py ´ nq2

b2
`
pz ´ pq2

c2
“ 0, o ‖ x, semiaxes: b, c,

px´mq2

a2
´
py ´ nq2

b2
`
pz ´ pq2

c2
“ 0, o ‖ y, semiaxes: a, c,

px´mq2

a2
`
py ´ nq2

b2
´
pz ´ pq2

c2
“ 0, o ‖ z, semiaxes: a, b,

see examples in fig. 4.16, fig. 4.17 a) and fig. 4.17 b) in the given order.
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Figure 4.17: Cones

Intersections of the cone and planes passing through the vertex V parallel with coordinate
planes are two straight lines intersecting at the vertex V. Intersection of the cone and plane
ρ K o is an ellipse if V R ρ or vertex V if V P ρ, see fig. 4.16.

Cone of revolution, see example in fig. 4.17 c), can be considered a limiting case of a hyper-
boloid generated by rotating the asymptotes of a hyperbola about bisector of the line F1F2 of
the hyperbola (see section 4.2.2) or about the line F1F2, i.e. the generating line and axis of the
cone are intersecting.

4.5.5 Paraboloid

Elliptic paraboloid is given by vertex V “ pm,n, pq, height VS (VS “ a, VS “ b or VS “ c) and
two semiaxes (b and c, a and c or a and b). Height is the distance between the vertex V of the
paraboloid and the centre S of the ellipse with the given semiaxes. This ellipse is the intersection
curve between the paraboloid and the plane passing through the centre S perpendicularly to the
axis of the paraboloid. Depending on the position of the axis VS Ă o of the paraboloid with
respect to the coordinate axes, the equation of the paraboloid is as follows

py ´ nq2

b2
`
pz ´ pq2

c2
“
x´m

a
, o ‖ x, semiaxes: b, c,

px´mq2

a2
`
pz ´ pq2

c2
“
y ´ n

b
, o ‖ y, semiaxes: a, c,

px´mq2

a2
`
py ´ nq2

b2
“
z ´ p

c
, o ‖ z, semiaxes: a, b,

see examples in fig. 4.18, fig. 4.19 a) or fig. 4.19 b) in the given order.
Intersections of the paraboloid and planes passing through the vertex V parallel with coor-

dinate planes are two parabolas. Intersection of the paraboloid and the plane ρ K o is an ellipse
if V R ρ or vertex V if V P ρ, see fig. 4.18.
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Figure 4.18: Elliptic paraboloid
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Figure 4.19: Elliptic paraboloids and paraboloid of revolution

If the length of the semiaxes of the intersection ellipse are not equal, the paraboloid is called
elliptic paraboloid. Otherwise, the paraboloid is called paraboloid of revolution, see fig. 4.19 c).

Hyperbolic paraboloid is given by vertex V “ pm,n, pq, height VS (VS “ a, VS “ b or
VS “ c) and two semiaxes (b and c, a and c or a and b). Height is the distance between the
vertex V of the paraboloid and the centre S of the hyperbola with the given semiaxes. This
hyperbola is the intersection curve between the paraboloid and the plane passing through the
centre S perpendicularly to the axis of the paraboloid. Depending on the position of the axis
VS Ă o of the paraboloid with respect to the coordinate axes, the equation of the paraboloid is
as follows

py ´ nq2

b2
´
pz ´ pq2

c2
“
x´m

a
, o ‖ x, semiaxes: b, c,



px´mq2

a2
´
pz ´ pq2

c2
“
y ´ n

b
, o ‖ y, semiaxes: a, c,

px´mq2

a2
´
py ´ nq2

b2
“
z ´ p

c
, o ‖ z, semiaxes: a, b.
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An example of hyperbolic paraboloid with the vertex at origin and its axis identical to z-axis
is drawn in fig. 4.20.

Intersection curve between a hyperbolic paraboloid and any plane perpendicular to the axis
of the paraboloid is a hyperbola. Specially, if the section plane passes through the vertex
V, asymptotes of hyperbolas sections are obtained. Moreover, intersection curve between the
hyperbolic paraboloid and any plane parallel with both asymptotes of the hyperbola and the
axis of the hyperbolic paraboloid is a straight line. Considering a set of such section planes
in both asymptotic directions, two sets of straight lines can be obtained as intersection curves.
Thus, the hyperbolic paraboloid can be considered a set of straight lines and, therefore, it is
called double ruled surface, see fig. 4.21.

4.5.6 Cylinder

In general, a cylinder is a set of generating straight lines parallel with the given direction and
passing through every point of the directing curve, see chapter 8. If the directing curve is
an ellipse, circle, hyperbola or parabola and the direction is perpendicular to the plane of the
directing conic section, the cylinder is called elliptic, see fig. 4.22 a), circular, see fig. 4.22 b),
hyperbolic, see fig. 4.22 c) or parabolic, see fig. 4.22 d). Circular cylinder is a cylinder of revolution.

A cylinder is given by the generating conic section, i.e. by the centre S and radius in the case
of cylinder of revolution, by the centre S and two semiaxes in the case of elliptic or hyperbolic
cylinder and by the vertex V and parameter p in the case of parabolic cylinder. Thus, the
equation of cylinder is identical to the equation of the generating conic section.
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Figure 4.22: Cylinders

4.6 Example problems – analytic geometry

� Example 4.1 – Straight line in E2

Given

Points A “ p1, 3q and B “ p3, 2q.



Required

Find vector, parametric, slope, intercept and general equations of straight line AB. Draw
a graph of straight line AB.

Solution

The direction vector according to the eq. (4.1) is u “ p2,´1q. Then, the vector equation given
by eq. (4.4) is

Pptq “ p1` 2t, 3´ tq, t P R

and parametric equations according to eq. (4.5) are

xptq “ 1` 2t,

yptq “ 3´ t, t P R. (4.24)

The slope given by eq. (4.7) is k “ ´1
2 and q can be determined from eq. (4.24). The value of

parameter t for which the condition xptq “ 0 is valid is

1` 2t “ 0 ñ t “ ´
1

2
.

By substituting t “ ´1
2 in y-coordinate function from eq. (4.24), we obtain q “ yp´1

2q “
7
2 .

Finally, the slope equation of straight line AB can be written

y “ ´
1

2
x`

7

2
.

Similarly, the x-intercept p can be determined by substituting the value of parameter t for which
the condition yptq “ 0 is valid in x-coordinate function from eq. (4.24)

3´ t “ 0 ñ t “ 3.

Thus p “ xp3q “ 7 and intercept equation of straight line is given by

x

7
`

2

7
y “ 1.

General equation can be obtained by modification of intercept equation

x` 2y ´ 7 “ 0 (4.25)

or it is possible to calculate normal vectors according to eq. (4.10)

n “ p1, 2q or n˚ “ p´1,´2q.

and substitute these normal vectors and coordinates of any point located on straight line AB
in eq. (4.9) to obtain c and c˚. By substituting point A, we get c “ ´7 and c˚ “ 7. Thus, the
general equation of straight line AB can be expressed by eq. (4.25) or by

´x´ 2y ` 7 “ 0.

It is obvious that both general equations represent the same straight line.
The graph of straight line AB is drawn in fig. 4.1. l



� Example 4.2 – Straight line in E3

Given

Points A “ p´2, 3, 4q and B “ p2, 1, 3q.

Required

Find vector and parametric equations of straight line AB. Using technical isometry, draw
a graph of straight line AB.

Solution

The direction vector according to the eq. (4.1) is u “ p4,´2,´1q. Then, the vector equation
according to eq. (4.16) is

Pptq “ p´2` 4t, 3´ 2t, 4´ tq, t P R

and parametric equations according to eq. (4.17) are

xptq “ ´2` 4t,

yptq “ 3´ 2t,

zptq “ 4´ t, t P R.

The graph of straight line AB in technical isometry is drawn in fig. 4.8. l

� Example 4.3 – Plane

Given

Points A “ p2, 1, 3q, B “ p4, 2, 1q and C “ p1, 4, 2q.

Required

Find vector, parametric, general and intercept equations of the plane given by points A, B
and C. Using technical isometry, draw the plane by means of its intersections with coordinate
planes.

Solution

The direction vectors of the plane are u “ p2, 1,´2q and v “ p´1, 3,´1q. Then, the vector
equation according eq. (4.18) is

Pps, tq “ p2` 2s´ t, 1` s` 3t, 3´ 2s´ tq, ps, tq P R2

and parametric equations are

xps, tq “ 2` 2s´ t,

yps, tq “ 1` s` 3t,

zps, tq “ 3´ 2s´ t, ps, tq P R2.



To obtain the general equation of the plane, it is necessary to calculate the normal vector
given by eq. (4.21), first

n “ uˆ u “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

2 1 ´2

´1 3 ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p5, 4, 7q.

After that, we can write
5x` 4y ` 7z ` d “ 0. (4.26)

By substituting the coordinates of any point located on the plane in eq. (4.26) we obtain equation
with one unknown d. For example, after substituting D “ p3, 5, 0q we obtain

15` 20` d “ 0 ñ d “ ´35.

Finally, we can write general equation of the plane

5x` 4y ` 7z ´ 35 “ 0. (4.27)

To obtain intercept equation of the plane, it is necessary to calculate intercepts p, q and
r, first. Therefore, by substituting y “ 0 and z “ 0 in the eq. (4.27) we obtain p “ 7, by
substituting x “ 0 and z “ 0 we obtain q “ 35

4 and by substituting x “ 0 and y “ 0 we obtain
r “ 5. Thus, the intercept equation is

x

7
`

4

35
y `

z

5
“ 1.

The plane in technical isometry is drawn in fig. 4.9. l

� Example 4.4 – Solid bounded by quadratic surfaces

Given

Quadratic surfaces

ρ : z “ 4´
a

2x2 ` 2y2, (4.28)

σ : 4x2 ` 4y2 ´ z2 ´ 4 “ 0, (4.29)

ω : z “ ´2´
a

2´ x2 ´ y2. (4.30)

Required

Determine the type and characteristics of these surfaces. Draw top and front views of the solid
bounded by surfaces ρ, σ and ω and sketch the solid in technical isometry. Find equations of
intersection curves k “ ρX σ and l “ σ X ω. How it is possible to generate the surface σ?

Solution

To recognize the type of the given quadratic surfaces and determine their characteristics, it is
necessary to turn their equations into the canonical form. Then, the surfaces can be expressed
by

ρ :
x2

2
`
y2

2
´
pz ´ 4q2

4
“ 0,

σ : x2 ` y2 ´
z2

4
“ 1,

ω : x2 ` y2 ` pz ` 2q2 “ 2.



It follows that the surface ρ is a cone of revolution with the vertex at point V “ p0, 0, 4q,
semiaxes a “ b “

?
2 and height c “ 2. Due to the negative sign in front of square root in

eq. (4.28), the part z ď 4 has to be considered only.
The surface σ is a one-sheeted hyperboloid of revolution with centre at point C “ p0, 0, 0q,

semiaxes a1 “ b1 “ 1, c1 “ 2 and its axis identical to z-axis. This surface can be generated by
revolution of hyperbola

x2 ´
z2

4
“ 1 (4.31)

or

y2 ´
z2

4
“ 1

about z-axis. Moreover, it is possible to create this surface by revolution of the straight line
given by points A “ p1, 1,´2q and B “ p´1, 1, 2q about z-axis, for example.

Finally, the surface ω is a sphere with the centre at point S “ p0, 0,´2q and radius r “
?

2.
Due to the negative sign in front of square root in eq. (4.30), the lower hemisphere has to be
considered only, i.e. z ď ´2.

To determine the intersection curve k, it is necessary to solve the set of equations

x2

2
`
y2

2
´
pz ´ 4q2

4
“ 0

x2 ` y2 ´
z2

4
“ 1,

to obtain z1 “ 2, z2 “
34
7 . Due to the condition z ď 3, only z1 “ 2 can be substituted into the

equations of cone ρ and hyperboloid σ to get

k : x2 ` y2 “ 2, z “ 2,

i.e. the circle in the plane z “ 2 with the centre S “ p0, 0, 2q and radius r “
?

2. Similarly, the
solution of the set of equations

x2 ` y2 ´
z2

4
“ 1

x2 ` y2 ` pz ´ 2q2 “ 2

is z1 “ ´2, z2 “ ´1.2. Due to the condition z ď ´2, only z1 “ ´2 can be substituted into the
equations of hyperboloid σ and sphere ω to get

x2 ` y2 “ 2, z “ ´2,

i.e. the circle in the plane z “ ´2 with the centre S “ p0, 0,´2q and radius r “
?

2.
The top, front and isometric views of the solid are drawn in fig. 4.23. Note that the top view

of generating line AB of one-sheeted hyperboloid of revolution σ is tangent line to the throat
parallel circle (see chapter 5) and the front view is the asymptote of hyperbola (4.31).
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Chapter 5

Surfaces of revolution and their
intersections

Surface of revolution σ “ pk, oq is a figure generated by revolution of a generating curve k about
the given axis o, k ‰ o, k Ć α, α K o, see example in fig. 5.1. Axis o is a straight line in three-
dimensional space in general position with respect to the coordinate system and generating curve
k is a spatial or planar curve. Without loss of generality, assume in this chapter that the axis o
is z-axis (or parallel with z-axis, o K π), unless stated otherwise.
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Figure 5.1: Surface of revolution generated by revolution of spatial generating curve
in isometric view (left) and in Monge projection (right)

If the analytic representation of the generating curve k is given by vector equation

k : Kpvq “
`

xpvq, ypvq, zpvq
˘

, v P rv1, v2s,

the vector equation of the surface of revolution σ generated by revolution of curve k about z-axis
is given by

σ : Spu, vq “
`

xpvq cosu´ ypvq sinu, xpvq sinu` ypvq cospuq, zpvq
˘

, u P r0, 2πs, v P rv1, v2s.

Trajectory of any point A on the generating curve is parametric u-curve of the surface called
parallel circle or parallel rA. Circle rA lies in plane α perpendicular to the axis of revolution o

109



with the centre S “ αXo and radius ||SA||. Due to o K π, plane α is parallel with the horizontal
plane of projection π and the parallel circle is projected as a circle without any distortion in
the top view rA1 “ po1, r “ ||o1A1||q. Front view rA2 is straight line segment of length 2||o1A1||,
perpendicular to o2 placed in true distance of plane α from the horizontal plane of projection
π, see fig. 5.1 right. Parametric v-curves are congruent generating curves at individual revolved
positions. Therefore, at any point A on the surface of revolution, there is located one parallel
circle rA and one revolved position of the generating curve k. Both systems of parametric curves
create a mesh by means of which is possible to visualize the surface of revolution.

It is possible to create a surface of revolution of the same shape by revolving any generating
curve suitably located on the surface of revolution about the axis of revolution. The easiest
generating curve is a planar intersection m of a surface of revolution and a plane ρ passing
through the axis of revolution o Ă ρ. The plane ρ is called meridian plane and the intersection
curve m is called meridian. The meridian is a planar curve (or a pair of planar curves) symmetric
with respect to the axis of revolution, see fig. 5.2 left. Meridian can be considered a generating
curve, thus, at any point on the surface of revolution, one parallel circle and one meridian is
located. If section plane ρ is parallel with the frontal plane of projection, the meridian is called
principal meridian and plane ρ is called principal meridian plane. Intersection of surface of
revolution and a half-plane beginning from the axis of revolution parallel with the frontal plane
of projection is called principal left half-meridian or principal right half-meridian.

The top view m1 of principal meridian is straight line segment on the straight line parallel
with x12 passing through o1. The front view m2 of principal meridian is projected in true shape
without any distortion, see fig. 5.2 right.
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Figure 5.2: Surface of revolution generated by revolution of principal meridian
in isometric view (left) and in Monge projection (right)

5.1 Properties of surfaces of revolution

Tangent plane τ at regular point A of a surface of revolution is determined by tangent lines
to parametric curves passing through point A located on the surface of revolution, i.e. by the
tangent line t to the generating curve and by the tangent line s to the parallel circle rA, τ “ pt, sq.
Normal line n at point A of a surface of revolution is perpendicular to the tangent plane τ , see
fig. 5.3, where the tangent plane and the normal line to the surface of revolution at point A of
half-meridian are drawn.
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Figure 5.3: Properties of surface of revolution

In the following list, the most important geometrical properties of surfaces of revolution are
summarized.

• Surface of revolution is symmetric with respect to the axis of revolution o and with respect
to any meridian plane ρ, o Ă ρ. It follows from the fact that each parallel circle is symmetric
with respect to the centre and with respect to each diameter.

• Tangent plane τ “ pt, sq of surface of revolution at point A of meridian is perpendicular
to the meridian plane ρ. To show this property, it is necessary to find two intersecting
straight lines located on plane ρ to which the plane τ is perpendicular. These straight lines
are SA and o because s K SA (s is a tangent line to parallel circle rA “ pS, r “ ||SA||q)
and s K o because s lies in the plane of parallel circle rA perpendicular to o.

• Normal line n at point A of a surface of revolution intersects axis o or it is parallel with
the axis o. Consider meridian A P m1 located in meridian plane ρ “ po,Aq and tangent
plane τ “ ps, tq at point A. Since n K τ , the tangent s to the parallel circle rA has to be
perpendicular to the tangent line t to the meridian m1. Moreover, the tangent line s K ρ.
It follows that normal line n Ă ρ. Both the axis o and the normal line n are located on
one plane, therefore they are intersecting or parallel.

• Tangent line of meridian intersects the axis of revolution or it is parallel with the axis of
revolution.

• Tangent lines of meridians at points along one parallel circle create a cone of revolution
with vertex W on axis of revolution or a cylinder of revolution or a plane perpendicular
to the axis of revolution.
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• If the tangent lines of meridians at points along one parallel circle create a cone of revolution
η called tangent cone, the normal lines of surface of revolution at points along the same
parallel circle create a cone of revolution κ called normal cone, see fig. 5.4.

• If the tangent lines of meridians at points along one parallel circle create a cylinder of
revolution ρ having internal contact with the surface of revolution, the parallel circle is
called throat. The normal lines of the surface of revolution at points along the throat
create a plane α K o.

• If the tangent lines of meridians at points along one parallel circle create a cylinder of
revolution ξ having external contact with the surface of revolution, the parallel circle is



called equator. The normal lines of the surface of revolution at points along the equator
create a plane β K o.

• If the tangent lines at points along one parallel circle create a plane γ K o, this parallel
circle is called crater. The normal lines of the surface of revolution along the crater create
cylinder of revolution ω.

5.2 Example problems – surfaces of revolution

� Example 5.1 – Missing front view of point on surface of revolution

Given

Generating curve k (a part of a circle with centre S) and axis o of surface of revolution σ “ pk, oq,
top view A1 of point A P σ in Monge projection, see fig. 5.5 a).

Required

Using Monge projection, construct the missing front view A2 of point A P σ.
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Figure 5.5: Construction of missing front view of point on surface of revolution

Analysis

Two lines (or curves) intersecting at the front view A2 have to be determined. The first line is
the ordinate a of point A. The second line is the front view of parallel circle rA – the trajectory
of point A. Parallel circle rA can be constructed as common trajectory of points A and A˚ on
generating curve k with the same distance from horizontal plane of projection as is the distance
of point A, i.e. zA “ zA˚ .



Graphical solution

1. Construct ordinate a K x12, A1 P a, see fig. 5.5 b).

2. Draw top view rA1 “ po1, r “ ||o1A1||q.

3. Top view A˚1 “ k1 X r
A
1 .

4. Construct ordinate a˚ K x12, A
˚
1 P a

˚.

5. Front view A˚2 “ a˚ X k2.

6. Construct front view rA2 K o2, A
˚
2 P r

A
2 .

7. Front view A2 “ rA2 X a. l

� Example 5.2 – Missing top view of point on surface of revolution

Given

Generating curve k (a part of a circle with centre S) and axis of revolution o of surface of
revolution σ “ pk, oq, front view A2 of point A P σ in Monge projection, see fig. 5.6 a).

Required

Using Monge projection, construct the missing top view A1 of point A P σ.
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Figure 5.6: Construction of missing top view of point on surface of revolution



Analysis

Two lines intersecting at the top view A1 have to be determined. The first line is the ordinate
a of point A. The second line is the top view of parallel circle rA – the trajectory of point A.
The parallel circle rA can be constructed as a common trajectory of point A and point A˚ on
generating curve k at the same distance from the axis of revolution as is the distance of point
A, i.e. ||A1o1|| “ ||A

˚
1o1||.

Graphical solution

1. Construct ordinate a K x12, A2 P a, see fig. 5.6 b).

2. Construct front view α2 of the plane in which the parallel circle rA lies: α2 K o2, A2 P α2.

3. Front view A˚2 “ k2 X α2.

4. Construct ordinate a˚ K x12, A
˚
2 P a

˚.

5. Top view A˚1 “ k1 X a
˚.

6. Construct top view rA1 “ po1, r “ ||o1A
˚
1 ||q.

7. Two solutions are obtained: top views A1, A
1
1 “ rA1 X a. l

� Example 5.3 – Tangent plane and normal line at point on surface of revolution

Given

Principal left half-meridian m (a part of a circle with centre S) and axis of revolution o of surface
of revolution σ “ pm, oq and top view A1 of point A P σ in Monge projection, see fig. 5.7 a).

Required

Using Monge projection, construct tangent plane τ and normal line n at point A of the surface
of revolution σ.

Analysis

Firstly, it is necessary to construct the front view A2 of point A according to the procedure
described in example 5.1. After that, the normal cone created by normal lines of surface σ at
points along parallel circle rA can be used to construct normal line n. Then, tangent plane
τ “ ps, tq is determined by tangent line t of meridian rotated into the position of point A and
tangent line s of parallel circle rA. To construct tangent line t at point A, the tangent cone
created by tangent lines of meridians at points along rA can be used.

Graphical solution

1. Construct front view A2, see example 5.1 and fig. 5.7 b).

2. Draw top view n1 “ o1A1.

3. Construct front view n˚2 “ S2A
˚
2 .

4. Front view V2 of the vertex of the normal cone V2 “ o2 X n
˚
2 .
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Figure 5.7: Tangent plane and normal line at point on surface of revolution

5. Draw front view n2 “ V2A2.

6. Top view t1 “ o1A1.

7. Construct top view s1 K t1, A1 P s1.

8. Top view τ1 “ pt1, s1q.

9. Construct front view t˚2 K n˚2 , A˚2 P t
˚
2 .

10. Front view W2 of the vertex of the tangent cone W2 “ t˚2 X o2.

11. Draw front view t2 “W2A2.

12. Front view τ “ pt2, s2q.

Note that for completeness of fig. 5.7 b), the top view τ˚1 of tangent plane τ˚ and top view
n˚1 of normal line n˚ are drawn, even though these figures are not necessary for the construction
of the required tangent plane τ and normal line n. l

� Example 5.4 – Principal meridian of surface of revolution

Given

Generating curve k and axis of revolution o of surface of revolution σ “ pk, oq in Monge projec-
tion, see fig. 5.8 a).

Required

Using Monge projection, construct principal meridian m of the surface of revolution σ.
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Figure 5.8: Principal meridian of surface of revolution

Analysis

Principal meridian m is the intersection of surface of revolution σ and principal meridian plane
ρ K π, o P ρ: m “ σXρ. To construct the principal meridian, a pointwise approach is used, where
the intersection points of the principal meridian plane and parallel circles of individual points
suitably chosen on the surface of revolution are constructed. Finally, the principal meridian is
drawn as a curve passing through all constructed points.

Graphical solution

1. Construct top view ρ1 of principal meridian plane ρ: ρ1 ‖ x12, o1 P ρ1, fig. 5.8 b).

2. Choose top view A1 P k1 and find the adjacent front view A2 “ a X k2, a is the ordinate
of point A. Note that it is possible to choose front view A2 P k2 and find the adjacent top
view A1 P k1, too.

3. Construct front view α2 K o2, A2 P α2, α is the plane of parallel circle rA.

4. Construct top view rA1 of parallel circle rA: rA1 “ po1, r “ ||o1A1||q.

5. Point of principal meridian is the intersection of the parallel circle rA and principal
meridian plane ρ. Here are two intersections A˚ and A`. Top views: A˚1 , A

`
1 “ rA1 X ρ1.

6. Front views A˚2 “ α2 X a˚, a˚ is the ordinate of point A˚ and A`2 “ α2 X a`, a` is the
ordinate of point A`.

7. Continue in a similar way to obtain a sufficient number of points on principal meridian.
Do not forget points at special positions such as points at the minimal or maximal distance
from the axis of revolution. Finally, draw the front view m2 as a curve (hyperbola in this



case) passing through all constructed points. The top view m1 Ă ρ1 is a straight line
segment.

Note that top view rA1 intersects the top view k1 of generating curve two times – at the
chosen top view A1 of point A and at the second top view B1 of point B. The parallel circles
rA Ă α and rB Ă β of these two points have the same radius but different altitudes given by
positions of front views α2 and β2. Thus, depending on the shape of the given generating curve,
it is possible to proceed effectively and use the top view B1 for construction of another point
B˚ and B` of principal meridian, see fig. 5.8 b). l

� Example 5.5 – Intersection of surface of revolution and projecting plane ρ K ν,
p “ σ X ρ

Given

Principal right half-meridian m, axis of revolution o of a surface of revolution σ “ pm, oq and
section plane ρ K ν in Monge projection, see fig. 5.9 a).

Required

Using Monge projection, construct the intersection curve p of the surface σ and the given plane
ρ K ν. a)
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Figure 5.9: Intersection of surface of revolution and projecting plane ρ K ν



Analysis

The surface of revolution σ generated by the given principal half-meridian m is a torus. Firstly,
it is necessary to construct the front view σ2 and the top view σ1 of the torus, see fig. 5.9 b).
To construct intersection curve p of the torus and the given plane ρ, a pointwise approach is
used, where the intersection points of the section plane ρ and parallel circles of individual points
suitably chosen on the surface of revolution are constructed. Finally, the curve of intersection p
is drawn as a curve passing through all constructed points.

Graphical solution

1. Construct front view m12 of the principal left half-meridian symmetrically with respect to
the front view o2.

2. Construct front views of craters as straight line segments tangent to both half-meridians.

3. Construct top view of the throat and equator of the torus.

Since ρ K ν, the front view p2 of intersection curve p is projected as the straight line segment
p2 Ă ρ2, see fig. 5.9 b). The top view p1 can be obtained by the following pointwise construction.

1. Choose front view A2 P p2.

2. Construct ordinate a K x12, A2 P a.

3. Construct α2 K o2, A2 P α2. Plane α is the plane of parallel circle of point A. In this case,
two parallel circles rA and RA can be found on the torus.

4. Construct top view rA1 “ po1, rq and RA1 “ po1, Rq, radii r and R measure in the front
view.

5. Top view of point on intersection curve p is the intersection of ordinate a and top views rA1
and RA1 of parallel circles: A1, A

1
1 “ RA1 X a, A21, A

˚
1 “ rA1 X a (depending on the position

of point A on the torus, there are one, two, three or four intersections).

6. Continue in a similar way to obtain a sufficient number of points on intersection curve p.
Do not forget points at special positions such as points located on the plane of craters,
throat and equator of torus. Finally, draw the top view p1 and indicate its visibility.

l

� Example 5.6 – Intersection of surface of revolution and projecting plane ρ K π

Given

Principal right half-meridian m, axis of revolution o of a surface of revolution σ “ pm, oq and
section plane ρ K π in Monge projection, see fig. 5.10 a).

Required

Using Monge projection, construct the intersection curve p of the surface σ and the given plane
ρ K π, p “ σ X ρ.
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Figure 5.10: Intersection of surface of revolution and projecting plane ρ K π

Analysis

The surface of revolution σ generated by the given principal half-meridian m is a torus. The
construction of its front view σ2 and top view σ1 is described in example 5.5. Since ρ K π,
the top view p1 of intersection curve p is projected as the straight line segment p1 Ă ρ1, see
fig. 5.10 b). The front view can be obtained by pointwise construction, where the intersection
points of the section plane and parallel circles of individual points suitably chosen on the surface
of revolution are constructed. Finally, the curve of intersection is drawn as a curve passing
through all constructed points.

Graphical solution

1. Choose top view A1 P p1.

2. Construct ordinate a K x12, A1 P a.

3. Construct top view rA1 “ po1, r “ ||o1A1||q.

4. Top view of point on principal meridian with parallel circle rA: A˚1 “ m1 X r
A
1 .

5. Construct ordinate a˚ K x12, A
˚
1 P a

˚.

6. Front view of point on principal meridian with the parallel circle rA: A˚2 “ m2 X a
˚.

7. Construct front view α2 K o2, A
˚
2 P α2. Plane α is the plane of parallel circle rA.

8. Front view of point on intersection curve p: A2 “ α2 X a.



9. Continue in a similar way to obtain a sufficient number of points on intersection curve
p. Do not forget points at special positions such as points located on craters, throat and
equator of the torus. Finally, draw the front view p2 of intersection curve p and indicate
its visibility.

Note that the top view rA1 intersects the top view m1 two times. Thus, it is possible to use
intersection of rA1 and the right principal half-meridian to find the position of the front view α2,
too. Next, the top view rA1 intersects the top view ρ1 two times – at the chosen top view A1

of point A and at the top view A11 of point A1. The front view A12 is the intersection of α2 and
ordinate a1. Finally, the ordinate a˚ intersects the front view m2 two times and position of front
view β2 can be determined, too. The plane β is the plane of parallel circle rB with the same
radius as rA but different altitude. Ordinates a and a1 intersect the front view β2 at points B2

and B12 on intersection curve p, see fig. 5.10 b). l

5.3 Intersection of surfaces of revolution

In general, intersection of two surfaces of revolution σ “ pm, oq and σ1 “ pm1, o1q is a spatial
curve q “ σXσ1 containing common points of both surfaces. A pointwise construction based on
intersection of auxiliary surfaces with surfaces of revolution is used to find a sufficient number
of common points of both surfaces. Each auxiliary surface intersects both surfaces at individual
curve of intersection. These curves either intersect each other or not. Intersecting curves define
a point on intersection curve q of both surfaces. Finally, the intersection curve q is drawn as
a curve passing through all constructed points.

The auxiliary surface is chosen so that its intersection with the surfaces of revolution can
be easily constructed. Depending on mutual position of surfaces of revolution, the following
auxiliary surfaces are used.

• Surfaces of revolution with identical axes – no auxiliary surface is used. Depending
on the shape of principal meridians m and m1, the intersection curve q is a parallel circle
(a set of parallel circles) common for both surfaces, see examples 5.7 and 5.8.

• Surfaces of revolution with parallel axes – auxiliary planes perpendicular to both
axes are used. Each plane intersects both surfaces at a parallel circle. Intersecting circles
define points on intersection curve of both surfaces of revolution, see example 5.9.

• Surfaces of revolution with intersecting axes – auxiliary spheres are used. The
centre of all auxiliary spheres lies at the intersection of axes. Each sphere intersects both
surfaces at two sets of parallel circles. Intersecting circles define points of the intersection
curve of both surfaces of revolution, see example 5.10 and section 5.3.2.

• Surfaces of revolution with skew axes – auxiliary planes parallel with both axes are
used. Each plane intersects both surfaces at intersection curve. Intersection curves which
intersect each other define points on intersection curve of both surfaces of revolution.
Graphical solution of this situation is beyond the scope of this textbook.

5.3.1 Example problems – intersection of surfaces of revolution

� Example 5.7 Surface of revolution and sphere with centre on axis of revolution

Given

Surface of revolution σ “ pm, oq and sphere σ1 “ pS,m1q in Monge projection, see fig. 5.11 a).



Required

Using Monge projection, construct intersection curve q “ σ X σ1.

Analysis

Axis of revolution of a sphere is any straight line passing through its centre. Since S P o, the
axis of the sphere can be considered identical to the axis o, thus no auxiliary surface is used. The
intersection of both surfaces consists of two parallel circles rA and rB – trajectories of points A
and B lying at intersections of principal meridians A,B “ mXm1, see fig. 5.11 b).
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Figure 5.11: Intersection of surface of revolution and sphere

Graphical solution

1. Front viewsA2, A
1
2, B2, B

1
2 “ m2Xm

1
2 of intersections of principal meridians, see fig. 5.12 b).

2. Draw front views rA2 “ A2A
1
2 and rB2 “ B2B

1
2 of parallel circles.

3. Draw top views rA1 “ po1, r “
1
2 ||A2A

1
2||q and rB1 “ po1, r “

1
2 ||B2B

1
2||q of parallel

circles. l

� Example 5.8 Surfaces of revolution with identical axes

Given

Surfaces of revolution σ “ pm, oq and σ1 “ pm1, oq in Monge projection, see fig. 5.13 a).

Required

Using Monge projection, construct intersection curve q “ σ X σ1.
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Figure 5.12: Intersection of surface of revolution and sphere – solution

Analysis

Since o “ o1, no auxiliary surface is used. The intersection q of surfaces σ and σ1 is parallel
circle rA – trajectory of point A lying at intersection of principal meridians A “ m Xm1, see
fig. 5.13 b).
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Figure 5.13: Intersection of surfaces of revolution with identical axes



Graphical solution

1. Front views A2, A
1
2 “ m2 Xm

1
2 of intersections of principal meridians, see fig. 5.14.

2. Draw front view rA2 “ A2A
1
2 of parallel circle rA.

3. Draw top view rA1 “ po1, r “
1
2 ||A2A

1
2||q of parallel circle rA.
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Figure 5.14: Intersection of surfaces of revolution with identical axes – solution
l

� Example 5.9 Surfaces of revolution with parallel axes

Given

Cone of revolution σ “ pm, oq and sphere σ1 “ pm1, o1q in Monge projection, see fig. 5.15 a).

Required

Using Monge projection, construct intersection curve q “ σ X σ1.

Analysis

Since o ‖ o1, a set of auxiliary planes ρ perpendicular to axes o and o1 is used. Each auxiliary
plane ρ intersects the cone at parallel circle rA and the sphere at parallel circle RA. Point A of
intersection curve q lies at the intersection of parallel circles A “ rA XRA, see fig. 5.15 b).

Graphical solution

1. Draw front view ρ2 K o2 of auxiliary plane ρ, see fig. 5.16. The position of the plane ρ is
chosen. It is delimited by front views B2, C2 “ m2 Xm12 of common points B and C of
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Figure 5.16: Intersection of surfaces of revolution with parallel axes – solution



principal meridians m and m1. The highest position of the auxiliary plane which intersects
both surfaces is given by B2, the lowest position by C2.

2. Draw top views rA1 “ po1, rq and RA1 “ po
1
1, Rq of parallel circles rA “ σXρ and RA “ σ1Xρ.

Measure the radii r and R in the front view.

3. Top views A1, A
1
1 “ rA1 XR

A
1 of points on intersection curve q.

4. Construct ordinate a K x12, A1 P a. Since o1o
1
1 ‖ x12, the top views A1 and A11 have the

same ordinate a.

5. Front views A2, A
1
2 “ ρ2 X a of points on intersection curve p. Since o1o

1
1 ‖ x12, the front

views A2 “ A12.

6. Continue in a similar way to obtain a sufficient number of points on intersection curve
q. Do not forget points at special positions such as points located on the equator of the
sphere. Finally, draw the curve q and indicate its visibility. l

� Example 5.10 Surfaces of revolution with intersecting axes

Given

A cone of revolution σ “ pm, oq and a cylinder of revolution σ1 “ pm1, o1q in Monge projection,
see fig. 5.17 a).

Required

Using Monge projection, construct intersection curve q “ σ X σ1.

Analysis

Since the axes o and o1 are intersecting, a set of auxiliary spheres with the centres at intersection
of axes S “ o X o1 is chosen. Each auxiliary sphere ρ intersects the cone at parallel circles rA

and sA and the cylinder at parallel circles cA and dA. Points A,A1, A2, A˚ of intersection curve
q lie at the intersections of these parallel circles, if they exist, see fig. 5.17 b).

Graphical solution

1. Draw front view ρ2 “ pS2, rρq of auxiliary sphere ρ. The radius rρ is chosen in the range
rρ P rrmin, ||S2B2||s, where rmin is the radius of the sphere inscribed into the cylinder
σ1 (the smallest sphere which has the intersection with both surfaces) and B is common
point of meridians m and m1 at the maximum distance from the intersection S of axes of
revolution.

2. Draw front views of parallel circles rA, sA “ σ X ρ – intersections of the auxiliary sphere
and the cone, i.e. rA2 “ 112, sA2 “ 221, 1, 11, 2, 21 “ m2 X ρ2.

Since o, o1 ‖ ν the front views of parallel circles are straight line segments perpendicular
to the corresponding axis.

3. Draw front views of parallel circles cA, dA “ σ1 X ρ – intersections of the auxiliary sphere
and the cylinder, i.e. cA2 “ 331, dA2 “ 441, 3, 31, 4, 41 “ m12 X ρ2. Since o1 ‖ π, the top views
of parallel circles c and d are straight line segments perpendicular to o11.
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Figure 5.17: Intersection of surfaces of revolution with intersecting axes

4. Points on intersection curve q are possible intersections of parallel circles rA, sA, cA and
dA. Front views A2 “ A12 “ rA2 X cA2 and A22 “ A˚2 “ rA2 X dA2 . Parallel circle sA has no
intersection with any other parallel circle on the auxiliary sphere.

5. Draw top views rA1 “ po1, r “
1
2 ||111||q, cA1 K o11 and dA1 K o11.

6. Top views A1, A
1
1 “ rA1 X c

A
1 and A21, A

˚
1 “ rA1 X d

A
1 of points on intersection curve p.

7. Continue in a similar way to obtain a sufficient number of points on intersection curve q.
Do not forget points at special positions, i.e. points located on the sphere inscribed into
the cylinder. Finally, draw the curve q and indicate its visibility.
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Figure 5.18: Intersection of surfaces of revolution with intersecting axes – solution
l

5.3.2 Degenerated intersection of two quadratic surfaces of revolution

Let us consider intersection of two quadratic surfaces of revolution (see section 4.5) with in-
tersecting axes. A special case, when the spatial intersection curve degenerated into two conic
sections, i.e. planar curves, is depicted in fig. 5.19.

To formulate the condition of degeneration, consider front views of the three situations
depicted in fig. 5.20. Here, an intersection of a cone of revolution σ “ pm, oq and a cylinder
of revolution σ1 “ pm1, o1q with intersecting axes is drawn together with the smallest auxiliary
sphere which intersects both surfaces. The cone and the axis of the cylinder are the same in all
three cases. The radius of the cylinder is different. The plane given by axes o and o1 is parallel
with frontal plane of projection.

In situation depicted in fig. 5.20 a), the smallest auxiliary sphere is the sphere inscribed into
the cylinder, i.e. the sphere contacts the cylinder along one parallel circle 111 and intersects the
cone at two parallel circles 221 and 331. Therefore, only three parallel circles intersecting at four
points are located on the auxiliary sphere. Two intersection Q2 and Q12 are visible in the front
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Figure 5.19: Degenerated intersection of quadratic surfaces of revolution with intersecting axes

view drawn in fig. 5.20 a). In the front view, points Q2 and Q12 are extreme points on both
branches q2 and q12 of the intersection curve. Branches q and q1 have no points of intersection.

Situation depicted in fig. 5.20 b) is similar. The smallest auxiliary sphere is the sphere
inscribed into the cone, i.e. the sphere contacts the cone along one parallel circle 111 and
intersects the cylinder at two parallel circles 221 and 331. Again, three parallel circles intersecting
at four points are located on the auxiliary sphere. In the front view, points Q2 and Q12 are
extreme points on both branches q and q1 of the intersection curve. Branches q and q1 have no
points of intersection.

Finally, fig. 5.20 c) shows a special situation, where the smallest auxiliary sphere is inscribed
into both surfaces. Consequently, there are only two parallel circles 111 and 221 intersecting at
two points located on the auxiliary sphere. Front view Q2 is the common extreme point on both
branches q and q1 of intersection curve. The branches q and q1 are planar curves projected as
straight line segments in the front view. Considering the position of the planes containing q and
q1 with respect to both surfaces of revolution, these planar curves are ellipses.

Thus, the following condition can be formulated: intersection of two quadratic surfaces of
revolution with intersecting axes degenerates into two ellipses if there exists a sphere with the
centre at intersection of the axes inscribed into both surfaces.

The degenerated cases of developable quadratic surfaces of revolution (cone and cylinder)
are often applied in pipeline engineering due to the simplicity of their design and manufacturing.
These situations are solved in chapter 8.
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Chapter 6

Helicoidal surfaces

Helicoidal surface σ is a figure generated by screw motion of generating curve k, see example
in fig. 6.1. Screw motion is a composition of translation along axis o and revolution about axis
o called axis of screw motion. Generating curve is a planar or spatial curve k ‰ o. In this
textbook, the length of translation directly proportional to the angle of revolution and constant
distance of the generating curve from the axis of screw motion are considered.
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Figure 6.1: Helicoidal surface generated by right-handed screw motion
of spatial generating curve in isometric view (left) and in Monge projection (right)
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Screw motion is given by axis o, parameter of screw motion v0 (i.e. translation directly
proportional to the revolution about one radian), and right-handed or left-handed orientation.
Axis o is a straight line in three-dimensional space in general position with respect to the
coordinate system. Without loss of generality, assume the axis o is z-axis (or parallel with
z-axis, i.e. o K π). The orientation of screw motion is designated by arrow around the top view
o1 in Monge projection: œ means right-handed (see fig. 6.1) and ö means left-handed (see fig. 6.2)
orientation. The arrow denotes the descent direction of screw motion. Instead of parameter v0,
screw motion can be defined by lead of screw motion l, i.e. translation directly proportional to
the revolution about 2π radians. One thread of screw motion is given by translation of one lead,
i.e. by revolution about 2π radians.
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Figure 6.2: Helicoidal surface generated by left-handed screw motion
of spatial generating curve in isometric view (left) and in Monge projection (right)

If the analytic representation of the generating curve k ‰ o is given by vector equation

k : Cpvq “
`

xpvq, ypvq, zpvq
˘

, v P rv1, v2s,

and o “ z, the vector equation of one thread of the right-handed helicoidal surface σ generated
by screw motion of curve k is given by

σ : Spu, vq “
`

xpvq cosu´ ypvq sinu, xpvq sinu` ypvq cosu, v0u
˘

,

u P r0, 2πs, v P rv1, v2s,



and vector equation of the left-handed helicoidal surface κ is given by

σ : Spu, vq “
`

xpvq cosu´ ypvq sinu, ´xpvq sinu´ ypvq cosu, v0u
˘

,

u P r0, 2πs, v P rv1, v2s.

Parametric v-curves of one thread of the surface are congruent generating curves at individual
screwed positions. Trajectory of any point A on generating curve is parametric u-curve of the
surface called helix. Thus, at any point A on the helicoidal surface, there is located one helix h
and one screwed position of the generating curve k. Both systems of parametric curves create
a mesh useful for helicoidal surfaces visualization.

Tangent plane at regular point A of a helicoidal surface is determined by tangent lines to
parametric curves passing through point A, i.e. by the tangent line to the generating curve
and by the tangent line to the helix. Normal line at regular point A of a helicoidal surface is
perpendicular to the tangent plane.

It is possible to create a helicoidal surface of the same shape by screw motion of any gene-
rating curve suitably located on the surface. There are two important planar curves on the
helicoidal surface which are suitable as generating curves: meridian m and normal section c.
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Figure 6.3: Principal meridian of helicoidal surface
in isometric view (left) and in Monge projection (right)

Meridian m of a helicoidal surface is a planar intersection of the helicoidal surface and
a plane ρ passing through the axis o called meridian plane, see example in fig. 6.3. Considering
one thread of helicoidal surface, the meridian is a pair of planar curves symmetric with respect



to the axis of helicoidal surface translated in the axial direction of l
2 . If the meridian plane

is parallel with frontal plane of projection, the meridian is called principal meridian (principal
half-meridian) and the plane is called principal meridian plane.

In Monge projection, the top view m1 of principal meridian is a straight line segment (two
straight line segments) on straight line parallel with x12 and passing through o1. The front view
m2 of principal meridian is projected in true shape without any distortion, see fig. 6.3 right.

Normal section c of a helicoidal surface is a planar intersection of the helicoidal surface
and a plane χ perpendicular to the axis o called normal section plane, see example in fig. 6.4.
In Monge projection, the top view c1 of normal section is projected in true size without any
distortion. The front view c2 of normal section is a straight line segment on the front view of
normal section plane χ2, see fig. 6.4 right.

O

=

2

z

z

o

y

x

m

m

ρ

1
o

1
σ

m'
1

m
11

ρ

x
12

2
σ

2
o

m'
2

2
m

χ

=2
χ c

2

σ
2

σ

1
σ

c
1

1
o

o

x
12

o

y

x

O

c

Figure 6.4: Normal section of helicoidal surface
in isometric view (left) and in Monge projection (right)

To obtain principal meridian or normal section of helicoidal surface, a pointwise construction
based on solution of intersections between individual helices – parametric curves of the helicoidal
surface and the section plane is used. Therefore, important properties of helix as a spatial
curve and necessary basic constructions are mentioned in the following of this section first.
Next, an overview of ruled helicoidal surfaces generated by screw motion of a straight line and
cyclic helicoidal surfaces generated by screw motion of a circle is given. These surfaces are
widely used in mechanical engineering. Finally, basic constructions on helicoidal surfaces such
as construction of tangent plane, construction of principal meridian and construction of normal
section are described in examples.



6.1 Properties of helix

The helix h is given by generating point A R o, axis o, parameter of screw motion v0 (or lead
of screw motion l) and orientation: h “ pA, o, v0, orientationq or h “ pA, o, l, orientationq. The
vector equation of one thread of a right-handed helix with o “ z is

h : Hpuq “ pr cosu, r sinu, v0uq, u P r0, 2πs, (6.1)

and vector equation of a left-handed helix with o “ z is

h : Hpuq “ pr cosu,´r sinu, v0uq, u P r0, 2πs,

where r “ ||A1o1|| is the distance of point A from axis o, see fig. 6.5.

1A

r r

2

1

A
k
1

o
o
1

0v

o

k
1

2k

2

2A

2
h

k
2

2
o

x
12

x
12

1

1h

h

1
h

o

yxx y

=A1A

o

h
1

developed helix

α

1

C

1
t

Ct

e
y

*B

z

1A=
C *

C

C1

v
0

V

α B

r
Bt
1

O

translation

revolution

x

t A

t
1
A

1o

tB

o

1B

x

α

h

l

α

ϕ

y

σ

r

1A B

rπ2

1
|       |BB

v
0

h

0
v

1oo1

0v

h

k
A

o

σ

A 1A=

h

h
1

left-handedright-handed

σ

Figure 6.5: Helix

A right-handed helix given by eq. (6.1) is considered in the following list of important pro-
perties. The modifications necessary for a left-handed one are obvious.

• The top view h1 : H1puq “ pr cosu, r sinu, 0q of the helix h is a circle. It follows that
helix lies on cylinder of revolution with axis o and radius r, see fig. 6.5. Construction of
the top view of helix is described in example 6.1.

• The front view h2 : H2puq “ pr cosu, 0, v0uq of the helix h is a cosine curve, see top views
and front views of helices – parametric u-curves of helicoidal surfaces in fig. 6.1 and fig. 6.2.
Construction of the front view of helix is described in example 6.1.

• The first curvature given by eq. (1.6) of helix is constant and equal to

1kpuq “
r

r2 ` v20
. (6.2)

• The second curvature given by eq. (1.7) of helix is constant and equal to

2kpuq “
v0

r2 ` v20
.



• Helix is a curve of constant slope, i.e. the angle α formed by tangent line to the helix
and any plane perpendicular to the axis o is constant, see fig. 6.6. To prove this property,
consider angle ϕ “ π

2 ´ α formed by unit tangent vector H1puq of the helix (6.1) and
coordinate vector k “ p0, 0, 1q (direction vector of axis o). According to eq. (1.5), the unit
tangent vector of helix is

H1puq “

˜

´r sin u
a

r2 ` v20
,
r cos u
a

r2 ` v20
,

v0
a

r2 ` v20

¸

and according to eq. (4.3), we get

cosϕ “
v0

a

r2 ` v20
.

Since the parameter of screw motion v0 and radius r are constant, the angle ϕ, and,
consequently, α, has to be constant, too.
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Figure 6.6: Properties of helix

• The development of a helix is a directly proportional graph with revolution (measured in
the length of arc) on horizontal axis and translation on vertical axis, see fig. 6.6 right. The
slope of this graph is equal to the angle α as follows from the previous properties. To draw
this graph, it is necessary to determine one point of the developed helix. Depending on the
given parameters, the coordinates of this point are pr, v0q or p2πr, lq. The rectangle with
the width equal to 2πr and height equal to l represents the development of the cylinder
(see chapter 8) on which the helix is located.

The graph of developed helix can be used to determine unknown translation of any point
on helix from its known revolution or vice versa, see point B P h in fig. 6.6, for example.



• Intersection of tangent line to the helix and a plane perpendicular to the axis o lies on
involute e obtained by rolling the top view of tangent line to the helix along the top view
of the helix (see section 2.5).

To understand this property, consider tangent line tB to the helix h at point B P h in
fig. 6.6 left. Tangent line tB intersects px, yq plane at point B˚ “ tB X tB1 . From the right
angled triangle4BB1B

˚ it follows that BB˚ is the development of AB, i.e. ||BB˚|| “ ŊAB,
and B˚B1 is the development of A1B1, i.e. ||B˚B1|| “ŔA1B1. Therefore, the point B˚ lies
on involute e. Similarly, point C˚ “ tC X tC1 lies on involute e, too.

• Tangent line to the helix is parallel with the generating line of a so called directing cone
of the helix obtained by revolution of triangle 4Ao1V about axis o, see fig. 6.6 left. The
boundary of circular base of the directing cone is the top view h1 of helix h. It follows
from equality of slope α of the directing cone and the helix. This property is used in
construction of the tangent line to the helix, see example 6.2.

• The set of tangent lines to a helix forms a developable helicoidal surface σ called tangent
surface of a helix. The intersection curve of tangent surface of a helix and a plane per-
pendicular to axis of helix is involute e, see fig. 6.7. To study properties of developable
surfaces, see chapter 8.
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Figure 6.7: Tangent surface of a helix

6.1.1 Example problems – helix

� Example 6.1 – Helix in Monge projection

Given

Helices g “ pA, o, l, right-handedq and h “ pA, o, l, left-handedq in Monge projection, see fig. 6.8 a)
and fig. 6.9 a).



Required

Using Monge projection, construct top views and front views of both helices together with the
cylinders of revolution on which the helices are located. Indicate the visibility of both helices.
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Figure 6.8: Right-handed helix
in Monge projection

Figure 6.9: Left-handed helix
in Monge projection

Analysis

The top view of helix as well as the top view of the corresponding cylinder of revolution is
a circle g1 “ po1, r “ ||o1A1||q, see fig. 6.8 b) and h1 “ po1, r “ ||o1A1||q, see fig. 6.9 b). The
front view of the cylinder of revolution is rectangle of width equal to 2||o1A1|| and height equal
to the lead l. The front view of the helix is a cosine curve.

Graphical solution

1. Starting from top view A1, divide the top view g1 (h1) of the helix into a sufficient number
n of equal parts. In fig. 6.8 b) and fig. 6.9 b) n “ 12, thus the circle g1 (h1) is divided by
30˝. Top views of the dividing points are designated A1, 11, 21, . . . , 121.

2. Determine translation l
n corresponding to the revolution by 360˝

n and starting from z-level
of point A (i.e. from x12 in this case), construct n equidistant lines parallel with x12 in
the front view. The distance between individual equidistant lines is equal to l

n .

3. Construct ordinates passing through 11, 21, . . . , 121.

4. Front views 12, 22, . . . , 122 of dividing points lie at the corresponding intersections of ordi-
nates and the set of equidistant lines.

5. Draw the front view g1 (h1) as a curve passing through the front views A2, 12, 22, . . . , 122
and indicate its visibility. l



� Example 6.2 – Tangent line to the helix

Given

Helices g “ pA, o, v0, right-handedq and h “ pA, o, v0, left-handedq in Monge projection, see
fig. 6.10 a) and fig. 6.11 a).

Required

Using Monge projection, construct tangent line to each helix at its generating point.
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Figure 6.10: Tangent line
to a right-handed helix

Figure 6.11: Tangent line
to a left-handed helix

Analysis

Tangent line t to the helix is constructed by means of parallelism with generating line p of
directing cone of the helix. Note that is not necessary to construct the front view of the helix.

Graphical solution

1. Construct top view g1 “ po1, r “ ||o1A1||q, see fig. 6.10 b) (or h1 “ po1, r “ ||o1A1||q, see
fig. 6.11 b) in the case of left-handed helix h).

2. Draw o1A1.

3. Construct top view t1 K o1A1, A1 P t of tangent line to the helix.

4. Construct top view p1 ‖ t1, o1 P p1 of generating line of the directing cone.

5. Top view Q1 “ p1 X g1 (Q1 “ p1 X h1). Point Q lies at the intersection of generating line
p and the base g1 (h1) of the directing cone. Note that here are two possible top views of
intersection p1 X g1 (p1 X h1). For the following constructions, it is necessary to use the
correct intersection corresponding to the orientation of the helix.



6. Construct ordinate q K x12, Q1 P q.

7. Front view Q2 “ q X x12.

8. Draw front view p2 “ Q2V2 of generating line of the directing cone.

9. Construct front view t2 ‖ p2, A2 P t2 of tangent line to the helix. l

� Example 6.3 – Intersection of helix and plane perpendicular to axis of the helix

Given

Helices g “ pA, o, v0, right-handedq and h “ pA, o, v0, left-handedq in Monge projection, see
fig. 6.12 a) and fig. 6.13 a).
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Figure 6.12: Intersection of right-handed helix and plane χ K o
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Figure 6.13: Intersection of left-handed helix and plane χ K o



Required

Using Monge projection, construct intersection C of helices g and h with the given plane χ
perpendicular to the axis of the helix.

Analysis

There are two points A and C on one helix. Point C lies in the plane χ ‖ π, thus its z-coordinate
is known and equal to the distance of χ2 from x12. To move a point from the A position to
the C position along the helix, it is necessary to (1) translate downward (zA ą zC) of the
known distance d representing the difference of z-coordinates d “ |zA ´ zC |, see fig. 6.12 b) and
fig. 6.13 b), and (2) revolve of the unknown revolution corresponding to the translation d. To
find the unknown revolution (measured in the length of arc), a graph of developed helix is used.
Note that it is not necessary to construct the front view of the helix.

Graphical solution

1. Construct top view g1 “ po1, r “ ||o1A1||q (or h1 “ po1, r “ ||o1A1||q in the case of
left-handed helix h).

2. Draw graph of developed helix g (h).

3. Measure the translation d in the front view and mark it on the vertical axis of the graph.

4. Determine the length of arc ŐA1C1 corresponding to the translation d from the graph
(designated by thick dashed line).

5. Measure the length of arc ŐA1C1 along the top view g1 (h1) in the direction of arrow œ (ö)
to find the top view C1 (the corresponding arc is designated by thick dashed line). When
measuring the length of the arc along a circle g1 (h1), it is possible to approximate it by
the length of polygon, as is shown in fig. 2.33.

6. Construct ordinate c K x12, C1 P c.

7. Front view C2 “ χ2 X c. l

� Example 6.4 – Intersection of helix and axial plane

Given

Helices g “ pA, o, v0, right-handedq and h “ pA, o, v0, left-handedq in Monge projection, see
fig. 6.14 a) and fig. 6.15 a).

Required

Using Monge projection, construct intersection C of helices g and h with the given plane ρ
passing through the axis o.
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Figure 6.14: Intersection of right-handed helix and plane ρ passing through axis o
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Figure 6.15: Intersection of left-handed helix and plane ρ passing through axis o

Analysis

Since the helix is an open cyclic curve, there are infinitely many intersection points of the helix
and any plane passing through the axis of the helix. In this example, two intersections C and



C 1 of one thread of helix and the plane ρ are considered only. Note that is not necessary to
construct the front view of the helix.

Points C and C 1 lie in the plane ρ K π, thus their top views C1 and C 11 are known, see
fig. 6.14 b) and fig. 6.15 b). To move a point from the A position to the C or C 1 position along
the helix, it is necessary to (1) revolve of the known angle =A1o1C1 or =A1o1C

1
1 (measured

in the length of the corresponding arc), and, (2) translate of the unknown translation d or d1

corresponding to the revolution of =A1o1C1 or =A1o1C
1
1. To find the unknown translation,

a graph of developed helix is used.

Graphical solution

1. Construct top view g1 “ po1, r “ ||o1A1||q (or h1 “ po1, r “ ||o1A1||q in the case of
left-handed helix h).

2. Draw graph of developed helix g (h).

3. Top views C1, C
1
1 “ ρ1 X g1 (C1, C

1
1 “ ρ1 X h1).

4. Construct ordinates c, c1 K x12, C1 P c, C
1
1 P c

1.

5. Measure the length of arcs ŐA1C1 (designated by thick dashed line) and ŐA1C 11 (designated
by thick dot and dash line) along the top view of helix g1 (h1) and mark them on horizontal
axis of the graph.

6. Construct auxiliary line zA ‖ x12, A2 P zA.

7. Determine the translations d and d1 corresponding to the revolution of angles =A1o1C1 and
=A1o1C

1
1 from the graph and draw auxiliary lines zC ‖ zA at the oriented distance d and

z1C ‖ zA at the oriented distance d1 from zA. The orientation depends on the orientation
of screw motion: in the case of right-handed helix zC ă zA and z1C ą zA, in the case of
left-handed helix zC ą zA, z1C ă zA.

8. Front views C2 “ cXzC and C 12 “ c1Xz1C . Note that the angle =C1o1C
1
1 “ 180˝, it follows,

that ||C2C
1
2|| “

l
2 . l

6.2 Ruled helicoidal surfaces

Ruled helicoidal surfaces are generated by screw motion of a straight line k, k ‰ o, k ∦ o.
According to the mutual position of the generating straight line k and the axis of screw motion
o and the angle formed by these two straight lines, the following types of ruled helicoidal surfaces
are distinguished.

• Closed right ruled helicoidal surface – the generating line k and the axis o are inter-
secting perpendicular lines, k K o, see fig. 6.16.

• Open right ruled helicoidal surface – the generating line k and the axis o are skew
perpendicular lines, k K o, see fig. 6.17.

• Closed oblique ruled helicoidal surface – the generating line k and the axis o are
oblique intersecting lines, k M o, see fig. 6.18.

• Open oblique ruled helicoidal surface – the generating line k and the axis o are
oblique skew lines, k M o, see fig. 6.19.



Examples of ruled helicoidal surfaces are shown in figs. 6.16 to fig. 6.19. Each figure contains
isometric view and Monge projection of the surface. In Monge projection, the definition figures,
principal meridian m Ă ρ and normal section c Ă χ of the surface are drawn, too.
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Figure 6.16: Closed right ruled helicoidal surface
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Figure 6.17: Open right ruled helicoidal surface
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Figure 6.18: Closed oblique ruled helicoidal surface
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6.3 Cyclic helicoidal surfaces

Cyclic helicoidal surfaces are generated by screw motion of a circle k “ pS, rq, S ‰ o. According
to the position of the director plane, i.e. the plane containing the generating circle, the following
special types of cyclic helicoidal surfaces are distinguished.

• Column surface – the director plane of the circle k is perpendicular to the axis o, see
fig. 6.20.

• Axial cyclic helicoidal surface – the director plane of the circle k is identical to the
meridian plane of the surface, see fig. 6.21.

• Pipe surface – the director plane of the circle k is perpendicular to the helix generated
by screw motion of the centre S of the circle, see fig. 6.22. This surface is called serpentine
of Archimedes, too.

Pipe surface belongs to the canal surfaces, i.e. envelope surfaces generated by motion of
a sphere, see chapter 7.

Examples of cyclic helicoidal surfaces are shown in figs. 6.20 to fig. 6.22. Each figure contains
isometric view and Monge projection of the surface. In Monge projection, the definition figures,
principal meridian m Ă ρ and normal section c Ă χ of the surface are drawn, too.
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Figure 6.20: Column surface
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Figure 6.21: Axial cyclic helicoidal surface
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6.4 Example problems – helicoidal surfaces

� Example 6.5 – Tangent plane at point on helicoidal surface

Given

Helicoidal surface σ “ pk, o, v0, left-handedq, point A P k in Monge projection, see fig. 6.23 a).

Required

Using Monge projection, construct tangent plane τ at point A on helicoidal surface σ.
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Figure 6.23: Tangent plane of helicoidal surface

Analysis

The surface σ is a column surface. The tangent plane at point A on helicoidal surface is given by
tangent line t to the generating curve k and tangent line s to the helix – trajectory of point A.
The top view t1 is tangent line to the top view k1, i.e. tangent line to the circle. The front view
t2 is tangent line to the front view k2, i.e. tangent line to the straight line segment. Tangent line
s to the helix of point A is constructed according to the procedure described in example 6.2.

Note that neither the front view of the helix of point A nor the front view of helicoidal
surface has to be constructed.

Graphical solution

1. Draw top view S1A1.



2. Construct top view t1 K S1A1, A1 P t1.

3. Front view t2 “ k2.

4. Construct tangent line s, see example 6.2.

5. Top view τ1 “ pt1, s1q, front view τ2 “ pt2, s2q. l

� Example 6.6 – Principal meridian of helicoidal surface

Given

Helicoidal surface σ “ pk, o, v0, right-handedq in
Monge projection, see fig. 6.24.

Required

Using Monge projection, construct principal
meridian m of one thread of helicoidal surface σ.

Analysis

The surface σ is open oblique ruled helicoidal sur-
face. To construct principal meridian, a pointwise
approach is used, i.e. for a sufficient number of suit-
able chosen points on the generating curve k, inter-
section points of their helices and the principal merid-
ian plane ρ are constructed. Finally, the principal
meridian is drawn as a curve passing through all the
constructed points.
Note that neither the front view of the helices nor
the front view of the helicoidal surface have to be
constructed.
To construct the intersection of each individual he-
lix with the principal meridian plane, the procedure
described in example 6.4, where the intersection of
helix and axial surface is solved, can be applied.
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Figure 6.24: Principal meridian
of helicoidal surface – task setting

In graphical solution, either graph of developed helix of each considered point or a graph
of developed helix of only one suitably chosen point is used to find the unknown translation
corresponding to the known revolution.

The former approach consists of a construction of many graphs, as is shown in fig. 6.25.
Points 1, 2, 3, 4 and 5 represent the chosen points on the generating curve. In the top view,
their helices are projected as circles with centre at o1 and radii r1, r2, r3, r4 and r5. These circles
intersect the top view ρ1 of principal meridian plane at points 1`, 2`, 3`, 4` and 5` on the
top view m`1 of the right half-meridian and at points 1˚, 2˚, 3˚4˚ and 5˚ on the top view m˚1
of the left half-meridian. Graphs of all developed helices are drawn and the unknown descent
d`1 , d

`
2 , d

`
3 , d

`
4 and d`5 corresponding to the revolution Ŋ11`,Ŋ22`,Ŋ33`,Ŋ44` and Ŋ55` as well as the

unknown ascent d˚1 , d
˚
2 , d

˚
3 , d

˚
4 and d˚5 corresponding to the revolution Ŋ11˚,Ŋ22˚,Ŋ33˚,Ŋ44˚ and Ŋ55˚

is read from the individual graphs.



Obviously, this approach is highly time consuming and provides unprecise results. The
smaller radius of the circle (top view of the developed helix) is, the shorter length of approximat-
ing polygon edge has to be chosen to obtain comparably accurate length of all the approximated
arcs according to fig. 2.33.
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Figure 6.25: Determination of unknown translation
by means of graphs of all developed helices

A more effective approach is shown in fig. 6.26. The graph of helix h of point 5 (with the
biggest radius r5) is developed here. Since the angle =1`o11 “ =5`o11

1, =2`o12 “ =5`o12
1, . . .,

the known revolution of all the other points can be expressed in the length of arc on the top
view h1. Then the graph of developed helix of only one point has to be drawn and the unknown
translation of all the other points can be read from this graph, see fig. 6.26. This approach is
applied in graphical solution of this example described below.

Note that the graph of developed helix of arbitrary point can be used. To obtain the most
precise results by hand drawn procedure, the graph of the helix with the biggest radius in the



top view is recommended. However, the most effective way is to choose the helix, radius of
which top view is equal to v0. In this case, the known revolution measured in the length of arc
on the top view of this helix is equal to the unknown translation. Therefore, it is not necessary
to construct any graph of developed helix.
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Figure 6.26: Determination of unknown translation
by means of graph of one developed helix

Graphical solution

1. Construct top view ρ1 ‖ x12, o1 P ρ1 of principal meridian plane, see fig. 6.27.

2. Determine point K P k at the maximal distance from axis o.

3. Construct top view h1 “ po1, r “ ||o1K1||q of helix of point K.

4. Construct graph of developed helix h of point K.

5. Choose point A P k, draw o1A1, construct top view g1 “ po1, r “ ||o1A1||q of helix of point
A and construct auxiliary line zA ‖ x12, A2 P zA.

6. Top views A`1 , A
˚
1 “ ρ1 X g1 of points on principal meridian.

7. Construct ordinates a` K x12, A
`
1 P a

` and a˚ K x12, A
˚
1 P a

˚.

8. Measure length of arcs ŔK`
1 A

1
1 and ŔA11K

˚
1 , A11 “ o1A1 X h1, K

`
1 ,K

˚
1 “ h1 X ρ1.

9. Using the graph of developed helix h, determine the corresponding translation d`.

10. Construct auxiliary lines z`A ‖ zA and z˚A ‖ zA at oriented distances d` and d˚.



11. Front views A`2 “ a` X z`A , A˚2 “ a˚ X z˚A of points on principal meridian.

12. Continue in a similar way to obtain a sufficient number of points on principal meridian.
Do not forget points at special positions such as a point at the minimal or maximal
distance from axis o. Finally, draw the front view m`2 and m˚2 as curves passing through
all constructed points. The top view m`1 Ă ρ1 and m˚1 Ă ρ1 are straight line segments.
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Figure 6.27: Principal meridian of helicoidal surface – solution
l



� Example 6.7 – Normal section of helicoidal surface

Given

Helicoidal surface σ “ pm, o, v0, left-handedq in
Monge projection, see fig. 6.28.

Required

Using Monge projection, construct normal section c
of helicoidal surface σ by the given plane χ.

Analysis

The surface σ is an axial cyclic helicoidal surface.
To construct normal section, a pointwise approach
is used, i.e. for a sufficient number of suitable cho-
sen points on the principal meridian m, intersection
points of their helices and the section plane χ are
constructed. Finally, the normal section is drawn as
a curve passing through all the constructed points.
Note that neither the front view of the helices nor
the front view of the helicoidal surface have to be
constructed.
To construct the intersection of each individual helix
with the principal meridian plane, the procedure de-
scribed in example 6.3, where the intersection of helix
and surface perpendicular to the axis of the helix is
solved, can be applied. To determine unknown revo-
lution corresponding to the known translation, graph
of developed helix of point on principal meridian at
the maximum distance from the axis is used.
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Figure 6.28: Normal section
of helicoidal surface – task setting

Graphical solution

1. Determine point K P m at the maximal distance from axis o, see fig. 6.29.

2. Construct top view h1 “ po1, r “ ||o1K1||q of helix of point K.

3. Construct graph of developed helix h of point K.

4. Choose point A P m.

5. Measure translation d “ ||A2χ2||.

6. Using the graph of developed helix h, determine the corresponding revolution ŔK1A11.

7. Measure the length of arc ŔK1A11 along the top view h1 in the opposite direction of arrow
œ (section plane is higher than point A) to find the top view A11.

8. Draw o1A
1
1.

9. Construct top view g1 “ po1, r “ ||o1A1||q of helix of point A.



10. Top view A˚1 “ o1A
1
1 X g1 of point on normal section c.

11. Front view A˚2 “ χ2 X a, a is the ordinate of point A˚.

12. Continue in a similar way to obtain a sufficient number of points on normal section. Do
not forget points at special positions such as a point at the minimal distance from axis o.
Finally, draw the top view c1 as a curve passing through all the constructed points. The
front view c2 Ă χ2 is a straight line segment.
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Figure 6.29: Normal section of helicoidal surface – solution
l



Chapter 7

Envelope surfaces

Let us consider a solid

κ : Bpu, v, tq “ pxpu, v, tq, ypu, v, tq, zpu, v, tqq, u P ru1, u2s, v P rv1, v2s, t P rt1, t2s

generated by continuous motion of a generating surface

σ : Spu, vq “ pxpu, vq, ypu, vq, zpu, vqq, u P ru1, u2s, v P rv1, v2s

along a trajectory

τ : Tptq “ pxptq, yptq, zptqq, t P rt1, t2s.

Then, a part

pσq : Eps, tq “ pxps, tq, yps, tq, zps, tqq, s P rs1, s2s, t P rt1, t2s

of superficies of this solid is called envelope surface if the following conditions are satisfied.

• Surface Eps, tq and any uv-parametric surface of the solid Bpu, v, tq are tangent along
s-parametric curve of surface Eps, tq called characteristic curve of envelope surface

c : Cpsq “ pxpsq, ypsq, zpsqq, s P rs1, s2s.

• At each point on the surface Eps, tq, there exists a common tangent plane and normal line
of the surface Eps, tq and one uv-parametric surface of the solid Bpu, v, tq.

• There does not exist any surface which is simultaneously a part of surface Eps, tq and any
uv-parametric surface of the solid Bpu, v, tq.

In general, the shape of the generating surface as well as the trajectory can be arbitrary.
However, the complexity of envelope surface determination is strongly dependent on the shape
of the generating surface, the shape of trajectory and the type of motion.

7.1 Types of motion

If the trajectory is a spatial freeform curve, the motion is called curvilinear. If the position of
moving figure with respect to the trajectory of curvilinear motion is preserved, the motion is
called general. Note that the position of moving figure with respect to the trajectory can be
defined by position of the figure with respect to the Frenet moving trihedron, see chapter 1.
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If the position of moving figure with respect to the world coordinate system is preserved
during the general motion, the motion is called translational. Screw motion (see chapter 6) is
a special case of general motion when the trajectory of motion is a helix. Rotation (see chapter 5)
is a special case of general motion when the trajectory of motion is a circle. Linear motion is
a special case of translational motion when the trajectory is a straight line. Linear motion is
called translation, too.

Generally, the characteristic curve of envelope surface generated by general or translational
motion consistently changes its shape during the motion. In the case of screw motion, rotation
and translation, the shape of characteristic curve is constant.

Example of the whole procedure of envelope surface generation is given in fig. 7.1. The
generating surface is a surface of revolution σ “ pm, oq given by axis o and meridian m, see
fig. 7.1 a) the trajectory is planar freeform curve τ . Several positions of the generating surface
along the trajectory are drawn in fig. 7.1 b). The generating surface moves by general motion,
because its position with respect to the trajectory is preserved. In particular, the meridian plane
of the generating surface and the normal plane of the trajectory are identical. The generated
solid κ is drawn in fig. 7.1 c) and the resulting envelope surface pσq together with characteristic
curve c in fig. 7.1 d). In the case of envelope surface generated by general motion along a planar
trajectory, the characteristic curve is the meridian of the generating surface located in normal
plane of the trajectory.
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Figure 7.1: Envelope surface



7.2 Properties of envelope surfaces

There are several important properties of envelope surfaces that result from the above given
definition.

1. Generating surface Spu, vq is a uv-parametric surface of the solid Bpu, v, tq at each instant.

2. Characteristic curve is a curve of contact between the envelope surface and any position of
the generating surface. It follows that the envelope surface Eps, tq can be considered a set of
characteristic curves. In other words – it can be generated by the motion of characteristic
curve only, instead of the whole generating surface. This property is very useful, because
the whole process of solution is simplified to the determination of characteristic curve.

3. At each point on a characteristic curve, there is a common tangent plane of both generating
and envelope surfaces. It follows that the common tangent plane contains the tangent line
to the trajectory of the considered point on the characteristic curve.

4. Characteristic curve can be considered the intersection curve of two infinitely close posi-
tions of the generating surface.

In the following sections, determination of characteristic curve of envelope surfaces generated
by translation, rotation and screw motion of a plane, sphere and surface of revolution are
described.

7.3 Envelope surfaces generated by motion of a plane

Envelope surface generated by motion of a plane is a ruled surface, i.e. surface generated by
motion of a straight line (see chapter 8). Characteristic curve is common generating line of the
generating plane and envelope surface. It follows from the following considerations: tangent
plane of any plane is the same plane. Thus, the generating plane is simultaneously the common
tangent plane of the generating and envelope surfaces at each point on the characteristic curve.
Moreover, characteristic curve can be considered the intersection curve of two infinitely close
positions of generating plane, i.e. a straight line.

• Envelope surface generated by translation of a plane – if the direction of translation
is parallel with the generating plane σ, the envelope surface pσq is identical to the plane
σ, characteristic curve c is a straight line perpendicular to the direction of translation, see
fig. 7.2.

If the direction of translation is not parallel with the generating plane, the envelope surface
does not exist.
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Figure 7.2: Envelope surface generated by translation of a plane
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• Envelope surface generated by rotation of a plane – if the axis o of revolution lies
on the generating plane σ, the envelope surface does not exist.

If the axis o is parallel with the generating plane, the envelope surface is a cylinder of
revolution with axis o. The characteristic curve is the generating line of the cylinder
parallel with axis o, see fig. 7.3 a) and example 7.1.

If the axis o intersects the generating plane and o M σ, the envelope surface is a cone of
revolution. The characteristic curve is the generating line of the cone passing through axis
o, see fig. 7.3 b) and example 7.2.

If o K σ, the envelope surface is identical to the plane σ, the characteristic curve is
a straight line perpendicular to axis o and intersecting axis o.

• Envelope surface generated by screw motion of a plane – if the axis o of screw
motion lies on the generating plane σ, the envelope surface does not exist.

If the axis o is parallel with the generating plane, the envelope surface is a cylinder of
revolution. The characteristic curve is the generating line of the cylinder parallel with axis
o, see fig. 7.4 a) and example 7.3.

If the axis o intersects the generating plane and o M σ, the envelope surface is a tangent
surface of the helix – trajectory of screw motion. The characteristic curve is the tangent
line of the helix, see fig. 7.4 b) and example 7.4.

If o K σ, the envelope surface does not exists.

7.4 Envelope surfaces generated by motion of a sphere

In general, envelope surface generated by motion of a sphere is called canal surface. The charac-
teristic curve of a canal surface is the principal circle of the generating sphere located in normal
plane to the trajectory. To show it, consider sphere σ moving by its centre S along a freeform
trajectory τσ, as is depicted in fig. 7.5 a).

Tangent plane τ of the sphere at any point A on the sphere is perpendicular to normal line
n “ SA. If point A is a point on the characteristic curve c of envelope surface pσq generated
by motion of the sphere, then the tangent line s which passes through point A and is parallel
with the tangent line t to the trajectory τσ passing through the centre S lies on tangent plane
τ . This occurs if the normal line n is perpendicular to the tangent line t. A normal line of
a sphere is any line passing through its centre. All normal lines of the sphere perpendicular to
the tangent line t create normal plane ν. Thus, the characteristic curve c of the envelope surface
is the intersection curve of the normal plane ν and the sphere σ. Obviously, this intersection is
the principal circle of the sphere σ located on normal plane ν of trajectory τσ.

This approach can be used to construct characteristic curve at arbitrary position of the
moving sphere. It follows that the canal surface, see fig. 7.5 b), can be generated by motion of
characteristic curve, too.

• Envelope surface generated by translation of a sphere – the envelope surface is
a cylinder or revolution with axis parallel with the direction of translation. The charac-
teristic curve is parallel circle of the cylinder, see fig. 7.6 a) and example 7.5.

• Envelope surface generated by rotation of a sphere – the envelope surface is a torus.
The characteristic curve is meridian of the torus, see fig. 7.6 b) and example 7.6.
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Figure 7.5: Canal surface

• Envelope surface generated by screw motion of a sphere – the envelope surface is
a pipe surface (serpentine of Archimedes). The characteristic curve is principal circle of
the sphere located in the normal plane of the helix – trajectory of the motion, see fig. 7.6 c)
and example 7.7.
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7.5 Envelope surfaces generated by motion of a surface of
revolution

Procedure of determination of envelope surface generated by motion of a sphere is applied
in pointwise construction of characteristic curve of envelope surface generated by motion of
a surface of revolution. The generating surface of revolution is replaced by a sufficient number
of inscribed spheres with centers on the axis of revolution moving in the same way as the
original generating surface. Possible points of characteristic curve of envelope surface generated
by motion of the surface of revolution are located on characteristic curves of partial canal surfaces
generated by motion of individual inscribed spheres.
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Figure 7.7: Envelope surface generated by translation of surface of revolution

To understand the method of inscribed spheres applied in construction of a point on the
characteristic curve, see fig. 7.7 a). Consider a surface of revolution σ “ pm, oq moving along the
trajectory τσ (to keep the readability of the picture and without loss of generality, the trajectory
is a straight line intersecting axis o, τσ M o). There are two parametric curves at each point A of
the surface of revolution – meridian m and parallel circle d. The tangent plane τ is determined
by tangent line u to the meridian and tangent line s to the parallel circle. The sphere κ is
inscribed into the surface of revolution σ so that the parallel circle d is the common curve of
the sphere κ and the surface σ. Thus, there is the common tangent plane τ and the normal line
n at each point of the parallel circle to both sphere κ and surface σ. The characteristic curve
of partial canal surface generated by motion of the sphere is the principal circle k located in
normal plane of the trajectory.



If there exists intersection of parallel circle d and characteristic curve k, then this point is
a point of characteristic curve c. The tangent line t passing through this point is parallel with
the tangent line to the trajectory and located on the tangent plane τ , see two intersections A
and A1 in fig. 7.7 a).

To obtain a sufficient number of points on the characteristic curve c, it is necessary to consider
a sufficient number of spheres inscribed into the generating surface of revolution. The resulted
characteristic curve c is drawn as a curve passing through the points constructed by the above
described procedure. The envelope surface depicted in fig. 7.7 b) is generated by the motion of
characteristic curve.

7.6 Example problems – envelope surfaces

� Example 7.1 – Rotation of a plane parallel with axis o

Given

Generating plane σ K π represented by rectangle ABCD and axis o K π of revolution in Monge
projection, see fig. 7.8 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface pσq and a part of
envelope surface pσq corresponding to the rectangle ABCD. Indicate the visibility.
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Figure 7.8: Envelope surface generated by rotation of plane parallel with axis o

Analysis

Envelope surface pσq is a cylinder of revolution with axis o, see fig. 7.3 a). Characteristic curve
c is a common generating line of the plane σ and cylinder pσq, it follows, that c ‖ o. Since o K π



and σ ‖ o, the top view pσq1 of the cylinder pσq1 is a circle with centre at o1 and radius equal
to the distance dpo, σq. This distance is projected in true size in the top view.

Graphical solution

• Construct straight line p K A1C1, o1 P p, see fig. 7.8 b).

• Top view c1 “ pXA1C1 of characteristic curve c.

• Construct top view pσq1 “ po1, r “ ||c1o1||q of clinder pσq.

• Construct front view c2 ‖ o2, the position of c2 is given by ordinate of top view c1.

• Construct front view pσq2. l

� Example 7.2 Rotation of a plane intersecting axis o

Given

Generating plane σ represented by rectangle ABCD and axis of revolution o in Monge projection,
see fig. 7.9 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface pσq and a part of
envelope surface pσq corresponding to the rectangle ABCD. Indicate the visibility.
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Figure 7.9: Envelope surface generated by rotation of plane intersecting axis o



Analysis

Envelope surface pσq is a cone of revolution with axis o, see fig. 7.3 b). Characteristic curve c
is a common generating line of plane σ and cone pσq, it follows, that c passes through axis of
the cone. Since o K π, the top view pσq1 of the cone is projected as two circles with centers at
o1 and radii equal to the distance dpo,ADq and dpo,BCq. Both these distances are projected in
true size in the top view.

Graphical solution

1. Construct top view c1 of characteristic curve c: c1 K A1D1, o1 P c1, see fig. 7.9 b).

2. Top views E1 “ c1 XB1C1 and F1 “ c1 XA1D1.

3. Construct circles po1, r “ ||o1E1||q and po1, ||o1F1||q – the top view pσq1 of cone pσq.

4. Construct front views E2 P B2C2 and F2 P A2D2.

5. Front view c2 “ E2F2.

6. Construct front view pσq2. l

� Example 7.3 – Screw motion of a plane parallel with axis o

Given

Generating plane σ K π and screw motion pσ, o, v0, left-handedq in Monge projection, see
fig. 7.10 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface pσq generated by
screw motion of the generating plane σ between the horizontal plane of projection π and the
given plane ρ.

Analysis

Envelope surface pσq is cylinder of revolution with axis o, see fig. 7.4 a). Characteristic curve
c is a common generating line of the cylinder and the generating plane σ. Since σ ‖ o, the top
view c1 is point of contact between the top view h1 “ po1, r “ dpo, σqq of helix h – trajectory of
screw motion and the top view σ1 of the generating plane, see fig. 7.10 b).

Graphical solution

1. Construct straight line p K σ1, o1 P p, see fig. 7.10 b).

2. Top view c1 “ pX σ1 of characteristic curve.

3. Construct front view c2 ‖ o2, the position of c2 is given by ordinate of top view c1.

Note that the top view h1 of helix does not have to be drawn. l
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Figure 7.10: Characteristic curve of envelope surface
generated by screw motion of plane parallel with axis o

� Example 7.4 – Screw motion of a plane intersecting axis o

Given

Generating plane σ K ν and screw motion pσ, o, v0, left-handedq in Monge projection, see
fig. 7.11 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface pσq generated by
screw motion of the generating plane σ.

Analysis

Envelope surface σ is tangent surface of helix h with the same slope as is the slope of the
generating plane, see fig. 7.4 b). Characteristic curve c is tangent line t to the helix h located
in the generating plane σ. Since σ K ν, the front view t2 “ c2 “ σ2. Reverse procedure of
construction of tangent line to the helix described in example 6.2 can be applied to find the top
view t1 “ c1 of tangent line t “ c.

Graphical solution

1. Front view A2 “ σ2 X o2 of generating point of the helix h.

2. Construct front view p2 of generating line p of directing cone of the helix h: p2 ‖ σ2,
V2 P p2. Note that V2Q2 is principal meridian of the directing cone of the helix h due to
σ K ν.
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Figure 7.11: Characteristic curve of envelope surface
generated by screw motion of plane intersecting axis o

3. Front view Q2 “ x12 X p2.

4. Construct top view Q1 in the principal meridian plane of the directing cone, Q1Q2 K x12.

5. Construct top view h1 “ po1, r “ ||o1Q1||q of the helix h.

6. Determine top view A1 P h1, A2A1 K x12 corresponding to the orientation of screw motion.

7. Construct top view t1 of tangent line to the top view h1, A1 P t1. Top view c1 of charac-
teristic curve c1 “ t1. l

� Example 7.5 – Translation of a sphere

Given

Generating sphere σ “ pS, rq and trajectory τ , S P τ in Monge projection, see fig. 7.12 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface generated by trans-
lation of the sphere σ along the trajectory τ . Construct part of envelope surface pσq correspon-
ding to the drawn part of the trajectory τ .

Analysis

Envelope surface pσq is a cylinder of revolution with axis τ , see fig. 7.6 a). Characteristic curve
c is principal circle of the sphere located in the projecting plane perpendicular to π. Therefore,
the characteristic curve is projected as a straight line segment in the top view and as an ellipse
in the front view, see fig. 3.27 a).
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Figure 7.12: Cylinder of revolution generated by translation of sphere

Graphical solution

1. Construct top view c1 of characteristic curve c: c1 “ C1D1, C1D1 K τ1, S1 P C1D1,
C1, D1 P σ1, see fig. 7.13 b).

2. Construct front view of major axis A2B22 of the ellipse into which the characteristic curve
is projected, A2B2 K τ2, S2 P A2B2, A2, B2 P σ2.

3. Draw the front view c2 of characteristic curve as the ellipse given by major axis A2B2 and
minor axis C2D2. Use approximation by osculation circles described in section 3.2.4.

4. Construct top and front view of cylinder pσq. The left base of the cylinder and charac-
teristic curve are identical. The right base of the cylinder and characteristic curve are
congruent. l

� Example 7.6 – Rotation of a sphere

Given

Generating sphere σ “ pS, rq and axis of revolution o K π in Monge projection, see fig. 7.13 a).

Required

Using Monge projection, construct characteristic curve c of envelope surface pσq generated by
rotation of the sphere σ about the axis o, principal meridian m of envelope surface and envelope



surface pσq.
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Figure 7.13: Torus generated by rotation of sphere

Analysis

Envelope surface pσq is a torus with axis o, see fig. 7.6 b). Characteristic curve c is principal circle
of the sphere located in the projecting plane perpendicular to π. Therefore, the characteristic
curve is projected as a straight line in the top view and as an ellipse in the front view, see
fig. 3.27 a). Principal meridian is a circle located in principal meridian plane of the torus. Thus,
its direct construction can be used instead of pointwise construction of principal meridian of
surface of revolution described in example 5.4.

Graphical solution

1. Construct top view c1 of characteristic curve: c1 “ C1D1, C1D1 “ o1S1Xσ1, see fig. 7.13 b).

2. Construct front view of major axis A2B2 K x12, S2 P A2B2, A2, B2 P σ2.

3. Draw front view c2 of characteristic curve as the ellipse given by major axis A2B2 and
minor axis C2D2. Use approximation by osculation circles described in section 3.2.4.



4. Construct top view pσq1 of torus pσq, i.e. top views of throat l1 “ po1, r “ ||o1D1||q and
equator e1 “ po1, r “ ||o1C1||q.

5. Construct top view ρ1 of principal meridian plane of torus: ρ1 ‖ x12, o1 P ρ1.

6. Top view of principal meridian m1,m
1
1 “ ρ1 X pσq1.

7. Construct front view of principal meridian, i.e. circles m2 “ pK2, rq, m
1
2 “ pK 1

2, rq,
K2,K

1
2 P e2, e2 is the front view of equator.

8. Construct front view pσq2 of torus pσq, i.e. front views of craters k2 K o2, A2 P k2 and
k12 K o2, B2 P k

1
2 and corresponding parts of the left and right principal half-meridians. l

� Example 7.7 – Screw motion of a sphere

Given

Generating sphere σ and screw motion pσ, o, v0, left-handedq in Monge projection, see fig. 7.14.

Required

Using Monge projection, construct characteristic curve c and right principal half-meridian m of
envelope surface pσq generated by the given screw motion of the sphere σ.

Analysis

Envelope surface pσq is a pipe surface (serpentine of Archimedes), see fig. 7.6 c). Characteristic
curve c is principal circle of the sphere located in the normal plane of helix h – trajectory of
the centre of the sphere. Since S2 P o2, the tangent line to the helix h at centre S is parallel
with the frontal plane of projection ν. Consequently, the normal line on the helix at centre S
lies in projecting plane perpendicular to the frontal plane of projection ν. The circle c located
in this plane is projected as an ellipse in the top view and as a straight line segment in the front
view, see fig. 3.27 b). To construct the principal right half-meridian, the pointwise construction
described in example 6.6 is applied.

Note that to draw the ellipse c, approximation by osculation circles (see section 3.2.4) can
be used. However, the points on ellipse c used in pointwise construction of principal meridian
have to be constructed as precisely as possible. Therefore, the precise construction of sufficient
number of additional points on the ellipse by means of parallelogram method (see section 3.2.4)
is recommended. After revolving these points into the principal meridian plane, more precise
graphical solution of principal meridian is obtained comparing with estimation of points on
ellipse approximated by osculation circles.

Graphical solution

1. Construct top view h1 “ po1, r “ ||o1S1||q of helix h, see fig. 7.15.

2. Construct tangent line t to the helix h according to the procedure described in example
6.2.

3. Construct front view χ2 K t2, S2 P χ2 of plane of characteristic curve.

4. Construct front view c2 of characteristic curve c: c2 “ C2D2, C2, D2 “ χ2 X σ2.

5. Construct top view of major axis A1B1 K x12, S1 P A1B1, A1, B1 P σ1.
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Figure 7.14: Pipe surface (serpentine of Archimedes) generated by screw motion of sphere
(task setting)

6. Draw top view c1 of characteristic curve c as the ellipse given by major axis A1B1 and
minor axis C1D1. Use approximation by osculation circles described in section 3.2.4 and
construct sufficient number of points on ellipse by means of parallelogram method described
in section 3.2.4.

7. Use construction described in example 6.6 to construct principal right half-meridian m.
The graphical solution for vertices of the ellipse c is drawn in fig. 7.15, the graph of
developed helix h is drawn in fig. 7.16.
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Figure 7.15: Pipe surface (serpentine of Archimedes) generated by screw motion of sphere
(solution)



0v

K

K

1S

D'

KC'

So 11=||        ||r
revolution

translation

C

x

d

d

12

D

1

2

2

d =

2

A
1

σ

D
1
*=C*

1
B
1
* *

1
A

1
DC

1

1SC' D'

K

B
1

m
1

1
h

t
1

1
p1

Q

1o

1
ρ

χ

σ
2

Q
p2

t
2

22
S = =A B

m
2

2

d

C

D

BA

v

2
o

2

C
2

*
2

D

0

A

d

d

d=d

C
2
*

*A
2

B*
2

D

V

B

Figure 7.16: Graph of developed helix h – trajectory of the center of generating sphere
l

� Example 7.8 – Rotation of a cylinder of revolution

Given

Generating cylinder of revolution σ and axis of revolution o in Monge projection, see fig. 7.17.

Required

Using Monge projection, construct characteristic curve c and left principal half-meridian of
envelope surface pσq generated by rotation of the cylinder σ about the given axis o.

Analysis

Pointwise construction based on method of inscribed spheres (see fig. 7.7) into the cylinder
of revolution σ is used to construct characteristic curve c. Point on characteristic curve is
constructed as intersection of two circles located on the inscribed sphere κ, if the intersection
exists. The first circle is the common parallel circle d of the sphere κ and the cylinder of
revolution σ. The second one is characteristic curve k of partial torus generated by revolution
of the sphere κ.

Since the axis a of cylinder σ is parallel with the frontal plane of projection ν, the parallel
circle d lies in projecting plane perpendicular to the frontal plane of projection ν. Therefore,
it is projected as a straight line segment in the front view and as an ellipse in the top view,
see fig. 3.27 b). The characteristic curve k of torus is a circle located in the projecting plane
χ perpendicular to the horizontal plane of projection π. Thus, it is projected as a straight line
segment in the top view and as an ellipse in the front view, see fig. 3.27 a) and example 7.6,
where the characteristic curve of envelope surface generated by revolution of a sphere is solved.

Pointwise construction described in example 5.4 is used to construct the left principal half-
meridian of the envelope surface generated by revolution of the cylinder σ about axis o.
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Figure 7.17: Envelope surface generated by rotation of cylinder of revolution

Graphical solution

1. Choose front view S2 P a2 of center S of the sphere κ inscribed into the cylinder σ and
determine top view S1 P a1, S1S2 K x12 (or choose top view S1 P a1 and determine the
front view S2 P a2, S1S2 K x12).

2. Construct the common parallel circle d of the cylinder σ and the sphere κ as the straight
line segment d2 K a2, S2 P d2 and the corresponding ellipse d1 (congruent with both bases
of the cylinder) according to fig. 3.27 b) approximated by osculation circles. Note that
neither the front view κ2 nor the top view κ1 have to be constructed.

3. Construct top view χ1 “ o1S1 of plane of characteristic curve k of partial torus generated
by revolution of the sphere κ.
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Figure 7.18: Envelope surface generated by rotation of cylinder of revolution – solution

4. Top views E1, F1 “ χ1 X d1 of points on characteristic curve c. Note that neither the top
view (straight line segment k1) nor the front view (ellipse k2) have to be constructed.

5. Determine front views E2, F2 P d2, E1E2 K x12, F1F2 K x12.

6. Continue in the similar way to obtain sufficient number of points on characteristic curve c.
Do not forget points at special positions, such as end points of characteristic curve denoted
by E1 and F 1 on the left base of the cylinder and points on the right base of the cylinder
(without denotation) and points E2 and F 2. Top views E21 and F 21 determine the points
at which the visibility of characteristic curve is changed in the top view.

7. Use pointwise construction described in example 5.4 to construct left principal half-meridian.
Left principal half-meridian has two branches m and m1. Note that points on principal
meridian corresponding to points E2 and F 2 determine the points at the minimal distance
from axis o.
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Figure 7.19: Envelope surface generated by rotation of cylinder of revolution
(isometric view)

Isometric view of the given and solved figures is drawn in fig. 7.19.

Note that both branches of the envelope surface pσq generated by rotation of cylinder of
revolution (axis of cylinder a and the given axis of revolution o are skew lines) are offset surfaces
of the one-sheeted hyperboloid of revolution generated by rotation of axis a about axis o. Thus,
the curves m2 and m12 in fig. 7.20 are offset curves to the hyperbola b2 – principal meridian of
the one-sheeted hyperboloid of revolution. l

� Example 7.9 – Rotation of a surface of revolution

Given

Generating surface of revolution σ and axis of revolution o in Monge projection, see fig. 7.20.

Required

Using Monge projection, construct characteristic curve c and right principal half-meridian of
envelope surface pσq generated by rotation of the surface σ about the given axis o.

Analysis

Pointwise construction based on method of inscribed spheres (see fig. 7.7) into the surface of revo-
lution σ is used to construct characteristic curve c. Point on characteristic curve is constructed
as intersection of two circles located on the inscribed sphere κ, if the intersection exists. The
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Figure 7.20: Envelope surface generated by rotation of surface of revolution
(task setting)

first circle is the common parallel circle d of the sphere κ and the surface of revolution σ. The
second one is characteristic curve k of partial torus generated by revolution of the sphere κ.

Since the axis a of surface σ is perpendicular to the frontal plane of projection ν, the parallel
circle d lies in principal plane parallel with the frontal plane of projection ν. Therefore, it
is projected as a straight line segment in the top view and as a circle in the front view, see
fig. 3.26 b). The characteristic curve k of torus is a circle located in the projecting plane χ
perpendicular to the horizontal plane of projection π. Thus, it is projected as a straight line
segment in the top view and as an ellipse in the front view, see fig. 3.27 a) and example 7.6,
where the characteristic curve of envelope surface generated by rotation of a sphere is solved.

Pointwise construction described in example 5.4 is used to construct the right principal
half-meridian of the envelope surface generated by rotation of the surface σ about axis o.

Graphical solution

1. Draw top view d1 K a1 of common parallel circle d of the surface σ and the inscribed
sphere κ. The position of d1 is suitably chosen, see fig. 7.21.

2. Top view E1 “ σ1 X d1 of point E.

3. Construct front view d2 “ pa2, r “ dpE1, a1qq of parallel circle d.

4. Top view S1 “ E1C
1
1 X a2 of the centre S of inscribed sphere κ. Note that neither the top

view κ1 nor the front view κ2 have to be constructed.



a

o

*
1
F

1
m

1
χ"

F"
1

2
F"

d"

1

x

2

σ

2

σ

1

1

r

r

2C C'

12

2
o

σ
1

2
σ

1
χ

S
1

22
=a Sd

2

1
o

2

2

1
E

F

F'

*
2
F

*F'
2

2
m

C1

d
1

σ

C'1C1

a
1

a

c

2

C'1

x

1
a

12

1

2

F =

o

F'
1

κ

1
c

1

2
c

1

σ

o

χ '

Figure 7.21: Envelope surface generated by rotation of surface of revolution – solution

5. Top view χ1 “ o1S1 of plane of characteristic curve of partial torus generated by rotation
of the inscribed sphere.

6. Top view F1 “ χ1 X d1 of point F on characteristic curve c.

7. Construct front view F2 P d2, F1F2 K x12 of point on characteristic curve c. Here are two
intersections F2 and F 12 of ordinate F1F2 and d2.

8. Continue in a similar way to obtain sufficient number of points on characteristic curve c.
Finally, draw the characteristic curve as a curve passing through all the constructed points.
Do not forget points at special positions given by position χ11 “ o1C1 and χ21 “ o1C

1
1.

9. Use pointwise construction described in example 5.4 to construct right principal half-
meridian m.

Isometric view of the given and solved figures is drawn in fig. 7.22.
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(isometric view)
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Chapter 8

Developable surfaces

The development of a surface is an isometric mapping of the surface onto a plane, i.e. the lengths
and angles of curves located on the surface are preserved. The surface is called developable if
it possible to unfold or unroll it into a planar figure without any distortion such as stretching
or tearing. The developed planar figure gives the true size of each area of the original curved
surface.

Developable surface is a special ruled surface with zero Gaussian curvature everywhere (see
chapter 1). Ruled surface is generated by continuous motion of a straight line called generating
line along a spatial curve called directing curve (directrix ). From the geometrical point of view,
the ruled surface has the same tangent plane at all points along a generating line while the
surface is located in the neighbourhood of this generating line in one halfspace determined by
the tangent plane. A ruled surface that is not developable is called warped.

Example of ruled developable surfaces is given in fig. 8.1. A cylinder of revolution and a cone
of revolution are drawn here together with the tangent plane at points on the generating line g.
Tangent plane at a point on a surface of revolution is given by tangent line to the generating
curve (generating line g itself) and tangent line t to the parallel circle, see chapter 5. All tangent
lines to the parallel circles at points on the generating line in fig. 8.1 are parallel, therefore only
one tangent plane along the generating line exists.
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Figure 8.1: One tangent plane along the generating line of developable surfaces

Example of warped surfaces is given in fig. 8.2. A one-sheeted hyperboloid of revolution and
a closed right ruled helicoidal surface are drawn here together with several tangent planes at
points on the generating line g. In the case of one-sheeted hyperboloid of revolution, the tangent
lines to the parallel circles of points on the generating line are not parallel, therefore, infinite
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number of tangent planes (called a sheaf of planes) along the generating line exists. Similarly,
tangent plane at a point on helicoidal surface is given by tangent line to the generating curve
(generating line g itself) and tangent line t to the helix, see chapter 6. The tangent lines to the
helices of points on the generating line are not parallel, therefore a sheaf of tangent planes along
the generating line exists, too.
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Figure 8.2: Sheaf of tangent planes along the generating line of warped surfaces

8.1 Types of developable surfaces

Developable surfaces include the following types.

• Plane – is given by translation of the generating line g along a directing line d (directrix),
see example in fig. 8.3 a). Plane is the basic developable surface.

• Cylinder – general cylinder (general cylindrical surface) is given by continuous translation
of generating line g along a spatial directing curve d, see example in fig. 8.3 b). If the
directing curve is a circle and the generating line is not perpendicular to the plane of the
directing circle, the cylinder is called oblique, see fig. 8.3 c). If the directing curve is a circle
and the generating line is perpendicular to the plane of the directing circle, the cylinder
is called right, see fig. 8.3 d). Right cylinder is a surface of revolution.

• Cone – general cone (general conical surface) is given by a fixed point (vertex) V and
spatial directing curve d, see example in fig. 8.3 e). The union of all straight lines passing
through the vertex and any point of the directing curve creates a cone. If the directing
curve is a circle and straight line given by vertex and the centre of the directing circle is not
perpendicular to the plane of the directing circle, the cone is called oblique, see fig. 8.3 f).
If the directing curve is a circle and straight line given by vertex and the centre of the
directing circle is perpendicular to the plane of the directing circle, the cone is called right,
see fig. 8.3 g). Right cone is a surface of revolution.

• Tangent surface of a spatial curve – the surface is given by motion of generating line
g in the direction of tangent vector to the spatial directing curve g. Tangent surface of
a spatial curve can be considered an envelope surface generated by motion of osculation
plane along a spatial directing curve. If the directing curve is a helix, tangent surface of
the helix is created, see section 6.1 and example 8.7.
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8.2 Methods of development

In general, the construction of development consists of selecting suitable lines (individual posi-
tions of generating lines) and important curves located on a curved surface and determination
of true or approximate mutual relationship of these lines and curves. The developed figure is
obtained by reproduction of the relationship on a plane. There are the following basic methods
of development.

• Parallel-line development – a set of parallel lines is selected on the surface. This method
is useful in the case of cylinder development, where lines parallel with the generating line of
the cylinder are chosen and the cylinder is approximated by inscribed prism, see examples
8.1, 8.2 and 8.3.

• Radial-line development – lines passing through one point are selected on the surface.
This method is suitable for cones, where the lines pass through the vertex and the cone is
approximated by inscribed pyramid, see examples 8.4 and 8.6.

• Tangent-line development – tangent lines to the directing curve are selected on the
surface. This method is suitable for tangent surface of spatial curves, where the surface is
approximated by a set of quadrilateral faces, see example 8.7.

• Triangulation – the surface is split into a set of triangular areas. This method can be used
in the case of any surface development even if the surface is theoretically not developable.
In such a case, the surface is approximated by irregular polyhedra with triangular faces.
The development consists in construction of true shapes of individual triangular faces.
Graphical solution is beyond the scope of this textbook, example is given in fig. 8.18.

8.2.1 Example problems – developable surfaces

� Example 8.1 – Development of right cylinder

Given

Right cylinder (cylinder of revolution) σ “ pd, gq and section plane χ K ν in Monge projection,
see fig. 8.4.

Required

Construct development σ0 of a part of the cylinder between the horizontal plane of projection
π and the section plane χ.

Analysis

The directing circle d lies in the horizontal plane of projection. The generating line g K d
and g ‖ ν. The intersection e “ σ X χ is an ellipse. Parallel-line development method is
used, where the cylinder is approximated by n-sided right prism inscribed into the cylinder.
Edges of the prism parallel with generating line g are projected in true length in the front view.
Edges of the prism base are projected in true size in the top view. Length of base edges can be
approximated by the chordal length of the polygon inscribed into the directing circle. For a more
accurate development, these lengths can be approximated according to fig. 2.33 or calculated as
semicircumference 2πr{n, where r is the radius of the cylinder. Then, the directing circle d is
developed into a straight line d0 of length equal to 2πr. Edges parallel with generating line g
are developed in straight lines perpendicular to the d0.
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Figure 8.4: Development of right cylinder – task setting

Graphical solution

1. Divide the top view d1 into sufficient number of n (n “ 12 at least) equal parts, see fig. 8.5,
where n “ 12. Top views 01, 11, . . . , 121 of points along the top view d1 of the directing
circle d are obtained.

2. Construct front views 02, 12, . . . , 122 of dividing points along the front view d2 of the
directing circle d.
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3. Construct front views 012, 1
1
2, . . . , 1212 of dividing points along the front view e2 of ellipse e.

4. Draw front views 020
1
2, 121

1
2, . . . , 1221212 of prism edges.

5. Draw development d0 of the directing circle as a straight line. Mark equidistant dividing
points 00, 10, . . . , 120 P d0 so that ||0010||, ||1020||, . . . , ||110120|| “ Ŋ0111. Note that d0 can
be drawn in arbitrary position anywhere. However, optimal position is shown in fig. 8.5,
where d0 is drawn in extension of d2 (i.e. x12 in this case).

6. Construct lines at points 00, 10, . . . , 120 perpendicular to d0.

7. Measure the true length of prism edges and mark them on the corresponding lines so that
||020

1
2|| “ ||000

1
0||, ||121

1
2|| “ ||101

1
0||, . . . , ||1221212|| “ ||1201210||.

8. Draw the developed ellipse e0 as a curve passing through points 010, 1
1
0, . . . , 1210. Edge 606

1
0

is the axis of symmetry of the developed shape. l

� Example 8.2 – Development of degenerated intersection of two right cylinders

Given

Right cylinder σ “ po,mq and axis o1 of right cylinder σ1 “ po1,m1q in Monge projection, see
fig. 8.6.

Required

Using Monge projection, construct the front view σ2 of the cylinder σ and the front view σ12 of
cylinder σ1 so that the intersection of both cylinders is degenerated. Construct development σ0
and σ10 of parts of both cylinders corresponding to the drawn parts of their axes. Do not draw
the top view of this situation.

S

2

o'

o

m

o'

2

2

2
S

σ
2

2

2 'σ0

σ
0

m'

'σ

12
x

o

1
m

1
=

1

2
m

o'
2

2

2
S

Figure 8.6: Development of degenerated intersection of two right cylinders – task setting



Analysis

Situation drawn in fig. 8.6 represents the intersection of two cylinders of revolution with inter-
secting axes, see chapter 5. If the intersection is degenerated, then the front view of auxiliary
sphere with centre S2 inscribed into both cylinders (see section 5.3.2) has to be constructed first.
Secondly, the front views of both cylinders can be constructed and parallel-line development de-
scribed in example 8.1 can be individually applied on each cylinder.

The prism edges parallel with axes of cylinders are projected in true length in the front view.
Base edges appear in true length in auxiliary views obtained by revolving the directing circles
into the principal plane parallel with the frontal plane of projection.

Due to symmetry, only half-circles are necessary to construct in auxiliary views. To construct
the developed shape, the top view of both cylinders does not have to be drawn.

Graphical solution

Graphical solution is given in fig. 8.7.
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� Example 8.3 – Development of oblique cylinder

Given

Oblique cylinder σ “ pd, gq and section plane χ K g in Monge projection, see fig. 8.8.

Required

Construct development σ0 of the cylinder σ.
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Figure 8.8: Development of oblique cylinder
task setting

Analysis

The directing circle d lies in the horizontal plane of projection. The generating line g is parallel
with the frontal plane of projection. The normal section e “ σ X χ of the cylinder is an ellipse
lying in the plane perpendicular to the generating line g.

Parallel-line development method is used, where the cylinder is approximated by an n-sided
oblique prism inscribed into the cylinder, see fig. 8.9. Edges of the prism parallel with generating
line g are projected in true length in the front view and their perpendicularity with normal section
e is preserved in the development.

Normal section e appears in true size in auxiliary view obtained by revolving the normal
section into the principal plane of projection parallel with the frontal plane of projection. The
length of base edges of the prism with vertices on normal section e can be approximated by
chordal length of polygon inscribed into the revolved ellipse (lengths r, r1 and r2 in fig. 8.9).
For a more accurate development, these lengths can be approximated according to fig. 2.33.
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Figure 8.9: Development of oblique cylinder – solution



Graphical solution

1. Divide the top view d1 into a sufficient number of n (n “ 12 at least) equal parts, see
fig. 8.9, where n “ 12. Top views 01, 11, . . . , 121 P d1 of points along the directing circle d
are obtained.

2. Construct front views 02, 12, . . . , 122 P d2 of dividing points.

3. Construct front views 012, 1
1
2, . . . , 1212 P e2 of dividing points along the normal section.

4. Draw front views 020
1
2, 121

1
2, . . . , 1221212 of prism edges. Note that the top views of prism

edges do not have to be drawn.

5. Revolve ellipse e into the principal plane parallel with the frontal plane of projection and
construct auxiliary view peq of the ellipse. The length of the major axis is equal to 2R,
where R is the radius of the directing circle. The length of the minor axis is equal to
||0126

1
2||. Note that due to symmetry, only a half of the revolved ellipse is necessary to

construct.

6. Construct dividing points p01q, p11q, . . . , p121q P peq in auxiliary view.

7. Draw development e0 of the normal section as a straight line. Mark dividing points
00, 10, . . . , 120 P e0 so that ||0010|| “ Ŕp01qp11q, ||1020|| “ Ŕp11qp21q and ||2030|| “ Ŕp21qp31q.
Use symmetry to mark all other points.

8. Construct lines at points 00, 10, . . . , 120 perpendicular to e0.

9. Measure the true lengths of prism edges between the horizontal plane of projection and
the normal section plane and mark them on the corresponding lines in the development
so that ||01202|| “ ||0

1
000||, ||1

1
212|| “ ||1

1
010||, . . . , ||1212122|| “ ||1210120||.

10. Draw the developed directing circle d0 as a curve passing through points 00, 10, . . . , 120.

11. Complete the development by d10 of the same shape as d0 at the distance l. The edge
passing through point 60 is the axis of symmetry of the developed shape. l

� Example 8.4 – Development of right cone

Given

Right cone (cone of revolution) σ “ pd, V q and section plane χ K ν in Monge projection, see
fig. 8.10.

Required

Construct development σ0 of a part of the cone σ between the horizontal plane of projection π
and the section plane χ.

Analysis

The directing circle d lies in the horizontal plane of projection. The intersection e “ σXχ is an
ellipse. The right cone development is a sector of a circle with radius l equal to the length of
generating line of the cone, see fig. 8.11. The sector angle ϕ is given by ϕ “ 360r{l, where r is
the radius of the directing circle.
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Figure 8.10: Development of right cone – task setting

Radial-line development method is used, where the cone is approximated by an n-sided right
pyramid inscribed into the cone. Edges of the pyramid passing through the vertex V are not
generally parallel with the frontal plane of projection. Thus, it is necessary to construct their
true lengths. Edges of the pyramid base are projected in true size in the top view. The length
of base edges can be approximated by chordal length of the polygon inscribed into the directing
circle. For a more accurate development, this length can be approximated according to fig. 2.33
or it is possible to use a protractor and measure the corresponding angle ϕ{n.

Graphical solution

1. Divide the top view d1 into a sufficient number of n (n “ 12 at least) equal parts, see
fig. 8.11, where n “ 12. Top views 01, 11, . . . , 121 P d1 of points along the directing circle
d are obtained.

2. Construct front views 02, 12, . . . , 122 P d2 of dividing points.

3. Construct front views 02V2, 12V2, . . . , 122V2 of pyramid edges. Note that top views of
pyramid edges passing through the vertex do not have to be drawn.

4. Front views 012 “ e2 X 02V2, 112 “ e2 X 12V2, . . ., 1212 “ e2 X 122V2 of dividing points along
the ellipse.

5. Determine the true length l0
1

, l1
1

, . . . , l12
1

the pyramid edges by revolving of pyramid edges
into the principal meridian plane. Edges 0V “ 12V and 6V are projected in true length
in the front view, because they are the principal meridians of the cone.



6. Construct the development d0 of the directing circle as a sector of a circle with radius l.
Mark dividing points 00, 10, . . . , 120 P d0 so that Ŋ0010, Ŋ1020, . . . , Ŕ110120 “ Ŋ0111.

7. Draw lines 00V0, 10V0, . . . , 120V0.

8. Measure the constructed true length of pyramid edges between the horizontal plane of
projection and the section plane χ by compass and mark them on the corresponding lines
so that ||000

1
0|| “ l0

1

, ||101
1
0 “ l1

1

||, . . ., ||1201210|| “ l12
1

.

9. Draw the developed ellipse e0 as a curve passing through points 010, 1
1
0, . . . , 1210. Edge 60V0

is the axis of symmetry of the developed shape.
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Figure 8.11: Development of right cone – solution
l

� Example 8.5 – Development of degenerated intersection of right cylinder and
right cone

Given

Right cylinder σ “ po,mq, axis o1 and vertex V of right cone σ1 “ pm1, V q in Monge projection,
see fig. 8.12.

Required

Using Monge projection, construct the front view σ2 of the cylinder σ and the front view σ12
of a right cone so that the intersection of these quadratic surfaces is degenerated. Construct



development σ0 and σ10 of parts of both surfaces corresponding to the drawn parts of their axes.
Do not draw the top view of this situation.
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Figure 8.12: Development of degenerated intersection of right cylinder and cone – task setting
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Figure 8.13: Development of degenerated intersection of right cylinder and cone – solution



Analysis

Situation drawn in fig. 8.12 represents an intersection of two quadratic surfaces of revolution with
intersecting axes, see chapter 5. If the intersection is degenerated, the front view of auxiliary
sphere with centre at S2 inscribed into both surfaces (see section 5.3.2) has to be constructed first.
After that, the front view of both surfaces can be constructed. Next, parallel-line development
described in example 8.1 can be applied on the cylinder and radial-line development described
in example 8.4 can be applied on the cone. To construct the developed shape, the top view of
both surfaces does not have to be drawn.

Graphical solution

Graphical solution is given in fig. 8.13. l

� Example 8.6 – Development of oblique cone

Given

Oblique cone σ “ pd, V q and section plane χ K ν in Monge projection, see fig. 8.14.

Required

Construct development σ0 of a part of the cone σ between the horizontal plane of projection π
and the section plane χ.
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Figure 8.14: Development of oblique cone – task setting
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Analysis

The directing circle d lies in the horizontal plane of projection. Radial-line development method
is used, where the cone is approximated by an n-sided pyramid. Edges of the pyramid passing
through the vertex V are not generally parallel with the frontal plane of projection. Thus, it is
necessary to construct their true lengths. Edges of the pyramid base are projected in their true
size in the top view. The length of the base edges can be approximated by the chordal length r
of the edge of polygon inscribed into the directing circle. Note that the normal section c “ σXχ
is not an ellipse in this case.

Graphical solution

1. Divide the top view d1 into a sufficient number of n (n “ 12 at least) equal parts, see
fig. 8.15, where n “ 12. Top views 01, 11, . . . , 121 P d1 of points along the directing circle
d are obtained.

2. Construct front views 02, 12, . . . , 122 P d2 of dividing points.

3. Construct front views 02V2, 12V2, . . . , 122V2 of pyramid edges. Note that top views of
pyramid edges passing through the vertex do not have to be drawn.

4. Front views 012 “ c2 X 02V2, 112 “ c2 X 12V2, . . ., 1212 “ c2 X 122V2 of dividing points along
the normal section.

5. Determine true length l0, l1, . . . , l12 and l0
1

, l1
1

, . . . , l12
1

of pyramid edges by revolving pyra-
mid edges into the principal plane parallel with the frontal plane of projection. Edges
0V “ 12V , 6V , 01V “ 121V and 61V are projected in their true length in the front view,
because they are parallel with the frontal plane of projection.

6. Construct individual triangular faces of pyramid, i.e. 40010V0 so that ||0010|| “ r,
||10V0|| “ l1 and ||V000|| “ l0; 41020V0 so that ||1020|| “ r, ||20V0|| “ l2 and ||V010|| “ l1;
etc.

7. Draw the development d0 of the directing circle as a curve passing through points
00, 10, . . . , 120.

8. Construct points 010, 1
1
0, . . . , 1210 at the distances l0

1

, l1
1

, . . . , l12
1

on the corresponding pyra-
mid edges in the development.

9. Draw the development c0 of the normal section as a curve passing through points
010, 1

1
0, . . . , 1210. The pyramid edge 606

1
0 is the axis of symmetry of the developed shape. l

� Example 8.7 – Development of tangent surface of helix

Given

Helix h “ pA, o, v0, right-handedq in Monge projection, see fig. 8.16 a).

Required

Construct the development σ0 of a half thread of tangent surface σ of helix h between the helix
and the horizontal plane of projection.



Analysis

Since the first curvature of the helix is constant, see eq. (6.2), the development h0 of helix is
a circle with radius

R “
r2 ` v20

r
. (8.1)

The radius R can be determined constructionally according to the Euclidean theorem, see
fig. 8.16 b). The intersection of the helix and the horizontal plane of projection is an invo-
lute e of top view h1 of the helix. The development e0 of this involute is an involute of the
developed helix h0. The tangent surface σ of the helix is a set of tangent lines to the helix.

The tangent-line development method is used and the surface is approximated by planar
quadrilaterals joined along edges – tangent lines to the helix.
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Figure 8.16: Development of tangent surface of helix – task setting and analysis

Graphical solution

1. Construct the top view h1 “ po1, r “ ||o1A1||q of helix. Divide a semicircle belonging to
the half of thread in a sufficient number of n equal parts (n “ 6 at least), see fig. 8.17,
where n “ 6. Top views 01, 11, . . . , 61 of points along the helix are obtained. Construct
their front views 02, 12, . . . , 62, see example 6.1. Construct tangent lines t0, t1, . . . , t6 at
each dividing point, see example 6.2.

2. Front views 012, 1
1
2, . . . , 6

1
2 P e2 of points on involute e lie at the intersections of tangent

lines and folding line x12.
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Figure 8.17: Development of tangent surface of helix – solution

3. Construct top views 012, 1
1
2, . . . , 6

1
2 as intersections of the ordinates of points and the corre-

sponding top views of tangent lines. Tangent line t3 is perpendicular to the folding line x12,
i.e. coincides with the ordinate constructed from front view 312. Therefore, it is necessary
to determine the distance ||313

1
1|| as is drawn in fig. 8.16 c), for example.

4. Draw the development h0 as a sector of a circle with radius R determined by construction
according to fig. 8.16 b).

5. Determine the length of arc s “ Ň01 from the graph of developed helix according to
fig. 8.16 d).

6. Mark points 00, 10 . . . , 60 P h0 along the development h0 so that Ŋ0010, Ŋ1020, . . . , Ŋ5060 “ s,
the approximation of the length of the arc by the length of the polygon given in fig. 2.33
can be used.

7. Construct tangent lines t00, t
1
0, . . . , t

6
0 to the development h0.

8. Determine points 10, 20, . . . , 60 P e0 so that ||101
1
0|| “ s, ||202

1
0|| “ 2s, . . ., ||606

1
0|| “ 6s.

9. Draw the development e0 as a curve passing through points 010, 1
1
0, . . . , 6

1
0. l



8.3 Developable transition surfaces

Transition surface (transition piece) is a surface connecting two differently shaped or sized ducts
represented by their planar profiles. If vector equations of both profiles are known, the transition
surface σ can be expressed as a ruled surface given by two directing curves d : Dpuq and e : Epuq
with the same domain of parametrization u P ru1, u2s as follows

σ : Spu, vq “ p1´ vqDpuq ` vEpuq, u P ru1, u2s, v P rv1, v2s, (8.2)

see example in fig. 8.18. However, the surface given by eq. (8.2) is not generally developable.
Usually, the directing curves d and e are divided into the same number of equally spaced parts
and approximated by polygons d̄ and ē. The warped ruled surface is broken into a series of small
triangles with edges and vertices at the dividing points. The set of triangles σ̄ approximates the
original form. The development consists in construction of true size of all triangles arranged in
an appropriate way. Finally, the polygons d̄ and ē are interpolated by smooth curves d̄0 and ē0
and the development σ̄0 is accomplished.
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Figure 8.18: Triangulation of warped ruled surface

Here, the graphical solution of a smooth developable transition surface between circular and
polygonal profiles located in parallel or intersecting planes is considered only. In such a case,
the smooth developable transition surface is composed of triangles and portions of oblique cones
so that each triangle lies on the tangent plane of the attached oblique cone. The following rules
can be formulated to determine the triangles and oblique cones.

• The number of triangles is equal to the number of polygon edges.

• The number of oblique cones is equal to the number of polygon vertices.



• Each edge of the polygon belongs to one triangle. The third vertex of the triangle is located
on the circle.

• Vertices of all triangles located on the circle break the circle in circular segments. Each
circular segment defines the directing circle of the corresponding oblique cone.

• Vertices of individual oblique cones coincide with vertices of polygon.

8.3.1 Problem examples – developable transition surfaces

� Example 8.8 – Transition surface between two profiles in parallel planes

Given

Polygon ABCD Ă π and circle k “ pS, rq in Monge projection, see fig. 8.19 a).

Required

Construct smooth developable transition surface between the polygon ABCD and circle k.
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Figure 8.19: Transition surface between two profiles in parallel planes

Analysis

Transition surface is created by four triangles 4ABE, 4BCF , 4CDG and 4DAH and four
parts of oblique cones given by vertices A,B,C and D and circular segments ŊHE, ŊEF , ŊFG and
ŊGH in the given order, see fig. 8.20 b).



Each edge of the polygon determines one edge of one triangle and each vertex of the polygon
determines the vertex of one oblique cone. For example, let us consider edge AB of triangle
4ABE and the attached cones with vertices at points A and B. The position of the third
vertex E on the circle k is determined so that the triangle 4ABE lies in tangent plane τ of
both attached cones. Tangent plane τ along the generating line g “ AE of oblique cone is given
by the generating line itself and tangent line t to the directing circle.

Obviously, the tangent line t has to be parallel with the edge AB. Since both profiles lie in
parallel planes, it is possible to find radius of the circle k parallel with the edge AB, see line
p ‖ AB containing such radius in fig. 8.19 b). Then, the intersection of straight line q K p and
circle k determines point E – point of contact between the circle k and tangent line t ‖ AB.

The development of transition surface consists in construction of the four triangles in true
size and construction of all small triangles in true size produced by development of oblique cones
described in example 8.6.
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Figure 8.20: Transition surface between two profiles in parallel planes – solution

Graphical solution

1. Construct straight line p ‖ A1B1, S1 P p, see fig. 8.20.

2. Construct straight line q K p, S1 P q.

3. Top view E1 “ k1 X q.



4. Construct front view E2 P k2, E1E2 K x12.

5. Construct true size of triangle 4ABE, i.e. the development 4A0B0E0.

6. Construct the development of oblique cone given by vertex at point B and directing circular
sector ŊEF according to the procedure described in example 8.6.

7. Continue in a similar way to obtain points F1, G1H1 P k1 and, finally, the whole developed
shape. l

� Example 8.9 – Transition surface between two profiles in intersecting planes

Given

Rectangle ABCD Ă ν and circle k “ pS, rq Ă π in Monge projection, see fig. 8.21 a).

Required

Construct smooth developable transition surface between the rectangle ABCS and circle k.
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Figure 8.21: Transition surface between two profiles on intersecting planes – task setting

Analysis

Transition surface is created by four triangles 4ABE, 4BCF , 4CDG and 4DAH and four
parts of oblique cones given by vertices A,B,C and D and circular segments ŊHE, ŊEF , ŊFG
and ŊGH in the given order, see fig. 8.22 b). Each edge of the rectangle determines one edge of
one triangle and each vertex of the rectangle determines the vertex of one oblique cone. Since



the rectangle ABCD and the circle k lies on intersecting planes, it is necessary to determine
intersection q “ νXπ of these planes, first (in this case, the intersection q is identical to x-axis).
After that, intersections of all edges of rectangle (generally of polygon) and straight line q is
necessary to find and construct tangent lines to the circle k from these intersections. Points of
contact between the circle and tangent lines determine the vertices of oblique cones.
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Figure 8.22: Transition surface between two profiles on intersecting planes – solution



Let us consider edge AB of triangle 4ABE and the attached cones with vertices at points
A and B in fig. 8.21 b), for example. The position of the third vertex E on the circle k is
determined so that the triangle 4ABE lies in tangent plane τ of both attached cones. Tangent
plane τ along the generating line g “ AE of the oblique cone is given by the generating line
itself and tangent line t to the directing circle. Tangent line t passes through the intersection
A1 “ q X AB of x-axis and the edge AB. Point E is the point of contact between the tangent
line t and the circle k.

Special situations occur in the case of edges BC and DA. Since they are parallel with x-axis,
the intersection lies at infinity. Consequently, the tangent line to the circle k is parallel with
x-axis, see tangent line t1, point of contact H and tangent plane τ 1 “ pHA, t1q in fig. 8.21 b).

The development of transition surface consists in construction of the four triangles in true
size and construction of all small triangles in true size produced by development of oblique cones
described in example 8.6.

Graphical solution

The procedure of construction is obvious, see fig. 8.22. Point E1 of contact between the tangent
line t and the circle k is constructed according to Thales’ theorem (circle c with diameter A1S1).
Bisectors of angles =B0F0C0 and =D0H0A0 are possible axes of symmetry of the developed
shape. l
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