A	CONSTRUCTIVE GEOMETRY						E01A021
Surname							
First name							
Date		Examiner					
Score	1	2	3	4	5	6	Total

1. Construct the rotary solid given by technical drawing in technical isometry. Point S lies at origin and axis of revolution of the solid is identical with y-axis of coordinate system.

2. Determine analytically the solid drawn in example 1.

SPHERE R 40

The solid is determined by the following areas.

- Inner area of left hemisphere σ given by centre $(S=(0,0,0)$ and radius 40 mm :

$$
y \geqslant-\sqrt{40^{2}-x^{2}-z^{2}}
$$

- Inner area of truncated cone of revolution ρ given by vertex $V=$ $(0,180,0)$, semiaxes $a=c=30, a\|x, c\| z$ and altitude $b=180$:

$$
\frac{x^{2}}{30^{2}}+\frac{(y-180)^{2}}{180^{2}}+\frac{z^{2}}{30^{2}} \leqslant 0, y \in[0,60]
$$

- Inner area of right hemisphere ω given by centre $C=(0,60,0)$ and radius 20 mm :

$$
y \leqslant \sqrt{20^{2}-x^{2}-z^{2}}
$$

3. Involute motion is given by fixed centrode p and moving centrode h. Considering the continuous part of fixed centrode only, construct three new positions of moving circle c. Construct points of contact between circle c and its envelope (c) at all positions and sketch the envelope (c).

4. Construct the development of oblique cylinder σ.

5. Two surfaces of revolution $\sigma=(m, o)$ and $\sigma^{\prime}=\left(m^{\prime}, o^{\prime}\right)$ are given. Using Monge projection, construct intersection curve $q=\sigma \cap \sigma^{\prime}$. Indicate the visibility.
6. Helicoidal surface $\sigma=\left(k, o, v_{0}\right.$, right-handed $)$ is given. Using Monge projection, construct the right principal half-meridian m of helicoidal surface σ.

