Α	CON	CONSTRUCTIVE GEOMETRY					E01A021	
Surname								
First name								
Date		Examiner			Grade			
Score	1	2	3	4	5	6	Total	

1. Construct the rotary solid given by technical drawing in technical isometry. Point S lies at origin and axis of revolution of the solid is identical with y-axis of coordinate system.

2. Determine analytically the solid drawn in example 1.

The solid is determined by the following areas.

• Inner area of left hemisphere σ given by centre (S = (0, 0, 0) and radius 40 mm:

$$y \geqslant -\sqrt{40^2 - x^2 - z^2}$$

• Inner area of truncated cone of revolution ρ given by vertex V = (0, 180, 0), semiaxes $a = c = 30, a \parallel x, c \parallel z$ and altitude b = 180:

$$\frac{x^2}{30^2} + \frac{(y-180)^2}{180^2} + \frac{z^2}{30^2} \le 0, \ y \in [0, 60]$$

• Inner area of right hemisphere ω given by centre C = (0, 60, 0) and radius 20 mm:

$$y \leqslant \sqrt{20^2 - x^2 - z^2}$$

3. Involute motion is given by fixed centrode p and moving centrode h. Considering the continuous part of fixed centrode only, construct three new positions of moving circle c. Construct points of contact between circle c and its envelope (c) at all positions and sketch the envelope (c).

4. Construct the development of oblique cylinder $\sigma.$

- 5. Two surfaces of revolution $\sigma = (m, o)$ and $\sigma' = (m', o')$ are given. Using Monge projection, construct intersection curve $q = \sigma \cap \sigma'$. Indicate the visibility.
- 6. Helicoidal surface $\sigma = (k, o, v_0, \text{right-handed})$ is given. Using Monge projection, construct the right principal half-meridian m of helicoidal surface σ .

