COMPUTER GRAPHICS - CGR E012037

PROGRAMME

Mo 10:45 – 12:15, KN:A-309		
Lecture	19.2.	Introduction
		Curves – definition, analytic expression.
		Continuity – parametric C^0 , C^1 and C^2 and geometric G^0 , G^1 and G^2 continuity.
		Ferguson cubic curve – definition, properties, Hermite polynomials derivation.
Tutorial	26.2.	Ferguson cubic curve – examples: vector equation, drawing, C^0 , C^1 and
		C^2 continuity at common point of two Ferguson cubic curves.
Lecture	4.3.	Bézier curve – definition, properties, Bernstein polynomials derivation,
		de Castejlau algorithm, C^0 , C^1 and C^2 continuity at common point of two
		Bézier curves of 2 nd and 3 rd degree.
Tutorial	11.3.	Bézier curve – examples: vector equation, tangent vectors, drawing, de Castejlau
		algorithm, continuity.
		Short assessment test – Curves I
Lecture	18.3.	Coons cubic curve – definition, properties, Coons polynomials derivation.
		Coons cubic B-spline – definition, continuity, knots and tangent vectors at knots
		construction.
		Clamped curve – definition, continuity, knots and tangent vectors at knots
		construction.
Tutorial	25.3.	Coons cubic B-spline – examples: vector equation of individual segments, knots
		and tangent vectors at knots construction.
		Clamped curve – examples: vector equation of individual segments, knots and
		tangent vectors at knots construction.
		Short assessment test – Curves II
	1.4.	Easter, the lesson is cancelled
Tutorial	8.4.	Interpolation cubic curve – 4 definition points, Bézier segments, C ² continuity,
		boundary conditions, set of equations for unknown control vertices, modelling
		in Rhinoceros, construction.
Lecture	15.4.	Surface – definition, properties, parametric curves, tangent vectors of parametric
		curves, twist vector, boundaries, corners, tangent planes at corners.
		Ruled surface – definition, properties, boundary curves, corners, tangent planes
		at corners, drawing.
		Surface of hyperbolic paraboloid – definition, properties, boundary curves,
		corners, tangent planes at corners, drawing.
Tutorial	22.4.	Ruled surface – examples: vector equation, boundary curves, corners, tangent
		planes at corners, drawing.
		Surface of hyperbolic paraboloid – examples: vector equation, boundary curves,
		corners, tangent planes at corners, drawing.
		Short assessment test – Surfaces I
Lecture Tutorial	29.4.	Coons bilinear surface – definition, properties, boundary curves, corners, tangent planes at corners, drawing.
		Bézier surface – definition, properties, boundary curves, corners, tangent planes
		at corners, drawing.
		Coons bilinear surface – examples: vector equation, boundary curves, corners,
	6.5.	tangent planes at corners, drawing.
		Short assessment test – Surfaces II
		Bézier surface – examples: vector equation, boundary curves, corners, tangent
Lecture	13.5.	planes at corners, drawing, C^0 , C^1 and C^2 continuity along the common
		boundary of two Bézier surfaces.
Tutorial	20.5.	Final assessment test – Curves and surfaces
Tutoriul		I mar assessment test – our ves una surfaces