

Binomial theorem

It states how to compute and express all terms in n-power of bracket (x+y):

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

i.e. without sum notation:

$$(x + y)^n = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \binom{n}{2} x^{n-2} y^2 + \cdots + \binom{n}{n-1} x^1 y^{n-1} + \binom{n}{n} x^0 y^n,$$

Human examples:

$$(x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4.$$

$$(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \cdots + nx^{n-1} + x^n.$$

1								
1	1							
1	2	1						
1	3	3	1					
1	4	6	4	1				
1	5	10	10	5	1			
1	6	15	20	15	6	1		
1	7	21	35	35	21	7		

Lets compute:

a) $(1 + \sqrt{2})^5$

b) $(1 - 2\sqrt[3]{3})^6$

c) $(x + \sqrt{x})^4$

d) $\left(y - \frac{1}{2y}\right)^5$

e) $(a\sqrt[3]{a} - 3)^3$

f) $\left(\sqrt{\frac{m}{n}} - \sqrt{\frac{n}{m}}\right)^5$

76 a) $41 + 29\sqrt{2}$; b) $97 - 708\sqrt[3]{3} - 516\sqrt[3]{9}$; c) $x^4 + 4x^3\sqrt{x} + 6x^3 + 4x^2\sqrt{x} + x^2$;
d) $y^5 - \frac{5}{2}y^3 + \frac{5}{2}y - \frac{5}{4y} + \frac{5}{16y^3} - \frac{1}{32y^5}$; e) $a^4 - 9a^2\sqrt[3]{a^2} + 27a\sqrt[3]{a} - 27$;
f) $\sqrt{mn}\left(\frac{m^2}{n^3} - \frac{5m}{n^2} + \frac{10}{n} - \frac{10}{m} + \frac{5n}{m^2} - \frac{n^2}{m^3}\right)$.

Verify that $x_1 = \sqrt{2} - 2$ is root of:

79 Ověřte, že číslo $x = \sqrt{2} - 2$ je kořenem rovnice $x^5 - 10x^3 - 24x - 16 = 0$.

Which member of the power does contain y^3 ?

Který člen binomického rozvoje $(y^2 + y^{-1})^9$ obsahuje y^3 ?

86 6. člen.

Prove:

a) $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$

b) $\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0$

c) $\binom{n}{0} - 2\binom{n}{1} + 2^2\binom{n}{2} - \dots + (-2)^n\binom{n}{n} = (-1)^n$

d) $4^n + \binom{n}{1}4^{n-1} + \binom{n}{2}4^{n-2} + \dots + 1\binom{n}{n} = 5^n$

e) $1 + 4\binom{n}{1} + 4^2\binom{n}{2} + \dots + 4^n\binom{n}{n} = 5^n$

99 Návody: a) $2^n = (1 + 1)^n$; b) $0 = (1 - 1)^n$; c) $(-1)^n = (1 - 2)^n$; d) $5^n = (4 + 1)^n$; e) $5^n = (1 + 4)^n$.

Complex numbers

Based on introduction of imaginary unit i such that

$$i^2 = -1$$

Complex number consists of real and imaginary part, it can plot as point in complex plane

$$\operatorname{Re}(2 + 3i) = 2 \quad \text{and} \quad \operatorname{Im}(2 + 3i) = 3 .$$

Algebraic form of complex number

$$z = a + bi$$

Complex conjugated number

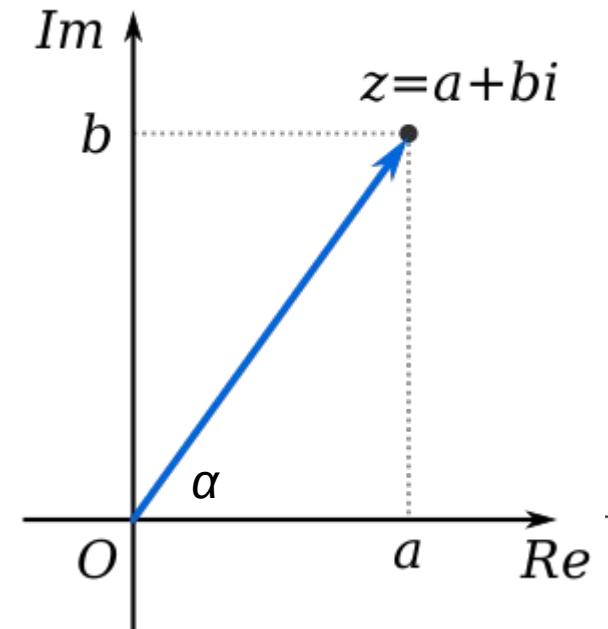
$$\bar{z} = a - bi$$

Magnitude of complex number (also absolute value)

$$|z| = \sqrt{a^2 + b^2}$$

Polar form of complex number

$$z = |z|(\cos \alpha + i \sin \alpha)$$



Complex numbers

de Moivre's formula

$$(\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha, n \in N$$

Operations:

- addition and subtraction

$$a + b = (x + yi) + (u + vi) = (x + u) + (y + v)i.$$

- multiplication

$$(x + yi)(u + vi) = (xu - yv) + (xv + yu)i.$$

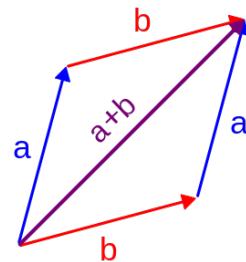
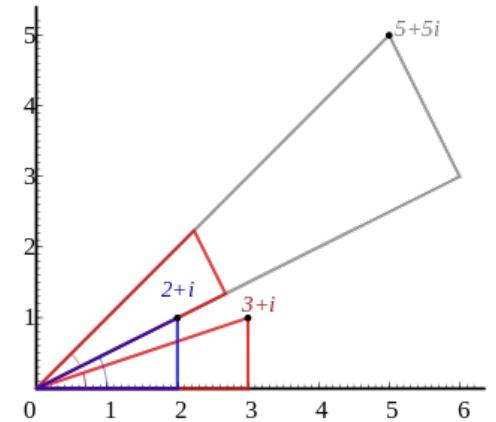
$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).$$

small example:

$$(2 + i)(3 + i) = 5 + 5i.$$

- reciprocal and division

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2} = \frac{x - yi}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i.$$

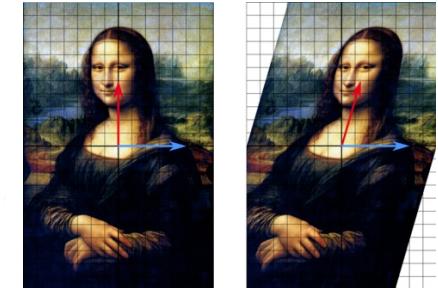


Applications of complex numbers

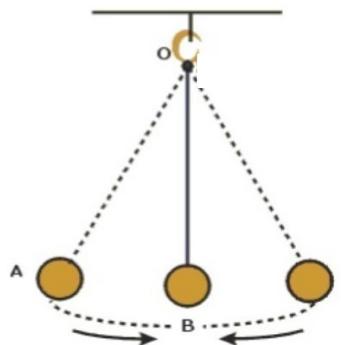
- Finding roots of polynomials

$$x^2 + 1 = 0$$

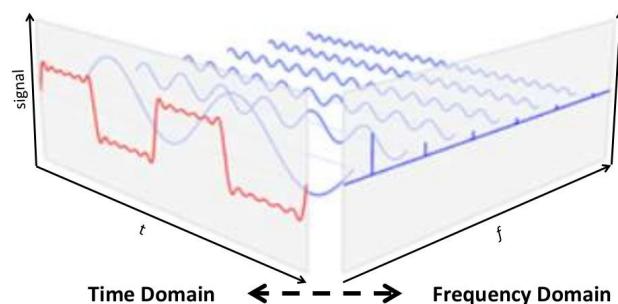
- Eigenvalues of matrices (i.e. characterization of matrix)



- Characterization of dynamical systems
 - determination of its stability

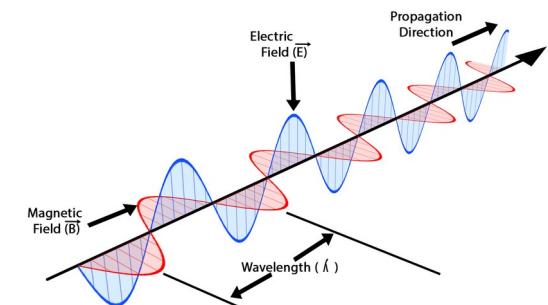


- Fourier analysis of signal
 - frequency spectrum



- Description of wave propagation

Electromagnetic Wave



Lets compute and verify according to Moivre's formula:

78 Umocněte podle binomické věty i podle Moivreovy věty:

a) $(1 + i)^7$

b) $(\sqrt{2} - i\sqrt{2})^6$

c) $(-2 + 2i\sqrt{3})^5$

78 a) $8 - 8i$; b) $64i$; c) $-512 - 512i\sqrt{3}$.

PS: de Moivre's theorem states $(\cos x + i \sin x)^n = \cos nx + i \sin nx$,

Derive formulas by using Moivre's formula and binomial theorem:

98 Užitím binomické věty a věty Moivreovy odvodte vzorce pro

a) $\sin 3x, \cos 3x$, b) $\sin 5x, \cos 5x$.

98 a) $\sin 3x = 3 \sin x - 4 \sin^3 x$, $\cos 3x = 4 \cos^3 x - 3 \cos x$; b) $\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x$, $\cos 5x = 5 \cos x - 20 \cos^3 x + 16 \cos^5 x$.

2 Vypočítejte: Compute

a) $\frac{3i+1}{2+i}$

c) $\frac{3i+2}{2i-3}$

e) $\frac{3+i\sqrt{3}}{3-i\sqrt{3}}$

b) $\frac{100}{3+4i}$

d) $\frac{1+4i}{i}$

f) $49(2-i\sqrt{3})^{-2}$

2 a) $1+i$; b) $12-16i$; c) $-i$; d) $4-i$; e) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$; f) $1+4\sqrt{3}i$.

3 Vypočítejte:

a) $(2+i) \cdot i + \frac{3+i}{2-i}$

d) $(5i-1) : \left(2 - \frac{i+3}{2+i}\right)$

b) $\frac{2+i}{i} + \frac{i}{i+1} - \frac{2i+1}{i-1}$

e) $\frac{\frac{i}{2-i} + \frac{1}{i}}{1 + \frac{1}{2i+1}}$

c) $-\frac{i-1}{2} - \frac{i}{i-1} \cdot i + 1$

3 a) $3i$; b) 1 ; c) $1-i$; d) $1+8i$; e) $-\frac{1}{2}i$.

$z_1 = \sin 135^\circ - i \cos 270^\circ$

$z_2 = \cos \frac{7}{4}\pi + i \sin 8\pi$

b) $z_1 = z_2 = \frac{\sqrt{2}}{2} + 0i$.

5b) Prove equality of number z_1 and z_2 :

7) Prove that number $z = \frac{i}{p-3i} + \frac{i}{p+3i}$ for any real p is purely imaginary.

For what value of p is $z = i/3$?

7) $z = i \cdot \frac{2p}{p^2+9}$, $p = 3$.

8) Determine for which real number b is expression $z = \frac{8 - 6b - ib}{1 - ib}$

a) real number, b) complex number, c) purely imaginary?

8 a) $b \in \{0; \frac{7}{6}\}$; b) $b \in \mathbb{R} - \{\frac{7}{6}\}$; c) $b \in \{2; 4\}$.

11 Vypočítejte: Compute

a) $i^2; i^3; i^4; i^{50}; i^{125}; i^{505}$
b) $5i^{100} - 3i^{10} + 12i^{75}$
c) $2i^9 - i^{12} + 5i^{16} - 3i^{11}$

d) $i^{-1}; i^{-2}; i^{-3}; i^{-4}; i^{-37}; i^{-78}$
e) $i^{-30} + i^{-40} + i^{-50} + i^{-60}$
f) $i^{-1} + 5i^{-6} - 14i^{-7}$

12 Vypočítejte: Compute

a) $1 + i + i^2 + i^3 + i^4$
b) $1 + i^2 + i^4 + i^6 + i^8 + i^{10}$
c) $1 + i^3 + i^5 + i^7 + i^9 + i^{11}$

d) $1 + i^{-1} + i^{-2} + i^{-3} + i^{-4}$
e) $i \cdot i^2 \cdot i^3 \cdot i^4 \cdot i^5 \cdot i^6 \cdot i^7 \cdot i^8 \cdot i^9 \cdot i^{10}$
f) $i^2 \cdot i^4 \cdot i^6 \cdot i^8 \cdot i^{10} \cdot i^{12} \cdot i^{14} \cdot i^{16} \cdot i^{18} \cdot i^{20}$

Sum of geometric sequence ;-)

13 Vypočítejte mocniny následujících závorek: Compute

a) $(1+i)^2; (1-i)^2; (1+i)^{-2}; (1-i)^{-2}$
b) $(1+i)^3; (1-i)^3; (1+i)^{-3}; (1-i)^{-3}$
c) $(1+i)^4; (1-i)^4; (1+i)^{-4}; (1-i)^{-4}$

12 a) 1; b) 0; c) $1-i$; d) 1; e) $-i$; f) -1 . 13 a) $2i; -2i; -\frac{1}{2}i; \frac{1}{2}i$; b) $-2+2i$;
 $-2-2i; -\frac{1}{4}-\frac{1}{4}i; -\frac{1}{4}+\frac{1}{4}i$; c) $-4; -4; -\frac{1}{4}; -\frac{1}{4}$.

First plot complex numbers z_1 and z_2 . Then graphically determine: a) and b) or c).

14 Nakreslete obrazy komplexních čísel $z_1 = 1 + 2i$, $z_2 = 3 - i$.

Potom graficky určete: a) $z = z_1 + z_2$ b) $z' = z_1 - z_2$

15 Nakreslete obrazy komplexních čísel $z_1 = 2 - i$, $z_2 = -2 - 4i$.

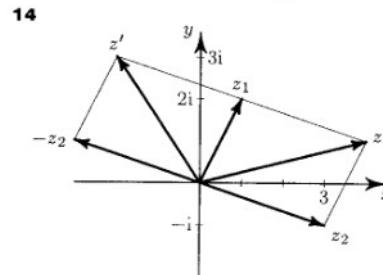
Potom graficky určete: a) $2z_1$ b) $\frac{1}{2}z_2$ c) $z = 2z_1 + \frac{1}{2}z_2$

16 Nakreslete obrazy komplexních čísel $z_3 = 1 + 2i$, $z_4 = 2 - i$.

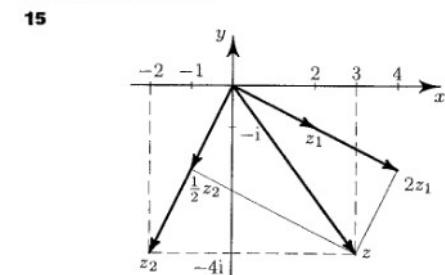
Potom graficky určete: a) $z = z_3 \cdot z_4$ b) $z = z_3 : z_4$

17 Nakreslete obraz komplexního čísla $z_5 = 2 + 3i$.

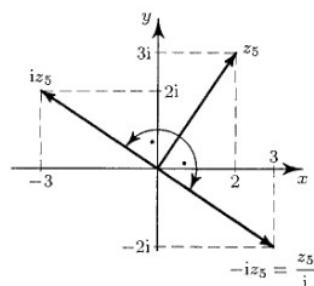
Potom graficky určete: a) $i \cdot z_5$ b) $-i \cdot z_5$ c) $z_5 : i$



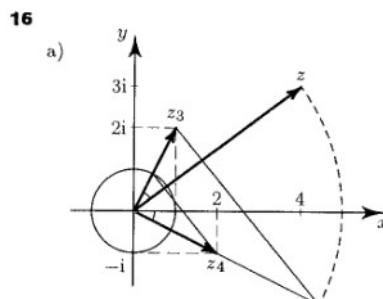
K řešení úlohy 14



K řešení úlohy 15

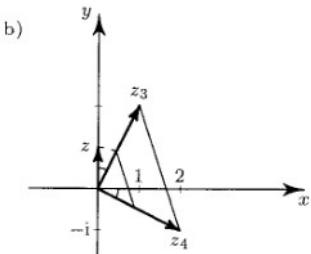


K řešení úlohy 17



16

a)



Find complex conjugated numbers:

19 Vypočítejte čísla komplexně sdružená k daným číslům:

$$w_1 = (2 + i)(3 - i)$$

$$w_2 = \frac{3 + 4i}{1 - 2i}$$

$$w_3 = \frac{4 - 2i}{i}$$

$$\mathbf{19} \quad \overline{w_1} = 7 - i, \quad \overline{w_2} = -1 - 2i, \quad \overline{w_3} = -2 + 4i.$$

23 Compute

$$\text{a) } |(7 + i)(4 - 3i)|$$

$$\text{c) } \left| \frac{10i}{2\sqrt{6} - 2\sqrt{3}i} \right|$$

$$\text{e) } \frac{\left| \frac{3-4i}{5i} \right| \cdot \left| \frac{1+i}{3-i} \right|}{|2i-1| + |-i|}$$

$$\text{b) } \left| \frac{4-2i}{3+i} \right|$$

$$\text{d) } \left| \frac{|4-3i| + i}{3-2i} \right|$$

$$\text{f) } \left| \frac{|\sqrt{3}-i| \cdot (i-1)}{|i(i-1)| - 2i} \right|$$

- - - - -

$$\mathbf{23} \quad \text{a) } 25\sqrt{2}; \quad \text{b) } \sqrt{2}; \quad \text{c) } \frac{5}{3}; \quad \text{d) } \sqrt{2}; \quad \text{e) } \frac{5-\sqrt{5}}{20}i; \quad \text{f) } \frac{2}{3}\sqrt{3}.$$

25 Plot all numbers in complex plane for which hold:

$$\text{a) } |z| = 3$$

$$\text{b) } |z - i| = 1$$

$$\text{c) } |z - 1 + i| = 2$$

$$\text{d) } |z - 2| \leq 3$$

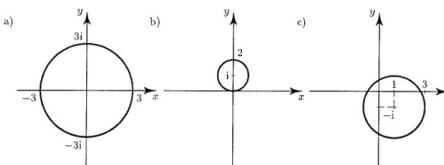
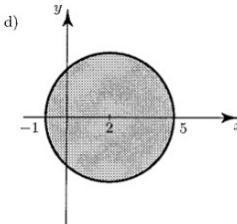
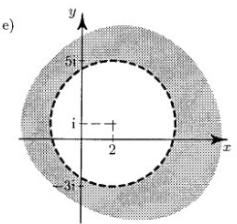
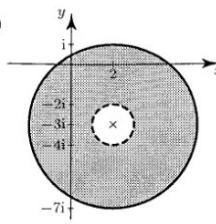
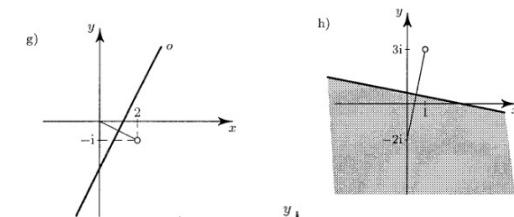
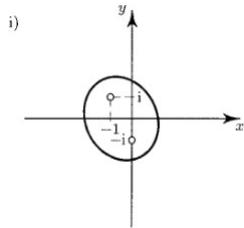
$$\text{e) } |z - 2 - i| > 4$$

$$\text{f) } 1 < |z + 3i - 2| \leq 4$$

$$\text{g) } |z| = |z - 2 + i|$$

$$\text{h) } |z - 1 - 3i| \geq |z + 2i|$$

$$\text{i) } |z + i| + |z + 1 - i| = 4$$



Find polar form of z:

30 Převeďte na goniometrický tvar následující komplexní čísla:

$$z_1 = 1 + i$$

$$z_2 = 3$$

$$z_3 = 5i$$

$$z_4 = -2 + 2i\sqrt{3}$$

$$z_5 = -\sqrt{3} + i$$

$$z_6 = 10 - 10i$$

$$z_7 = -7 - 7i$$

$$z_8 = \sin 30^\circ + i \cos 30^\circ$$

$$z_9 = 1 + \cos \frac{3}{4}\pi + i \sin \frac{3}{4}\pi$$

$$\begin{aligned} \mathbf{30} \quad z_1 &= \sqrt{2}(\cos \frac{1}{4}\pi + i \sin \frac{1}{4}\pi), \quad z_2 = 3(\cos 0 + i \sin 0), \quad z_3 = 5(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}), \quad z_4 = 4(\cos \frac{2}{3}\pi + \\ &+ i \sin \frac{2}{3}\pi), \quad z_5 = 2(\cos \frac{5}{6}\pi + i \sin \frac{5}{6}\pi), \quad z_6 = 10\sqrt{2}(\cos \frac{7}{4}\pi + i \sin \frac{7}{4}\pi), \quad z_7 = 7\sqrt{2}(\cos \frac{5}{4}\pi + \\ &+ i \sin \frac{5}{4}\pi), \quad z_8 = 1(\cos \frac{1}{3}\pi + i \sin \frac{1}{3}\pi), \quad z_9 = \sqrt{2 - \sqrt{2}}(\cos \frac{3}{8}\pi + i \sin \frac{3}{8}\pi). \end{aligned}$$

35 Find absolute value of z and plot it in complex plane:

$$z_1 = 5(\cos 120^\circ + i \sin 120^\circ)$$

$$z_2 = 2\left(\cos \frac{4}{3}\pi + i \sin \frac{4}{3}\pi\right)$$

$$\mathbf{35} \quad |z_1| = 5 \wedge \varphi = 120^\circ, \quad |z_2| = 2 \wedge \varphi = \frac{4}{3}\pi.$$

Compute product and division of numbers z1 and z2.

38 Vypočítejte součin a podíl komplexních čísel z_1, z_2 . Výsledek vyjádřete v goniometrickém i v algebraickém tvaru.

a) $z_1 = 2(\cos 105^\circ + i \sin 105^\circ), z_2 = 4(\cos 225^\circ + i \sin 225^\circ)$

b) $z_1 = 2(\cos \frac{5}{3}\pi + i \sin \frac{5}{3}\pi), z_2 = 4(\cos \frac{1}{6}\pi + i \sin \frac{1}{6}\pi)$

$$\begin{aligned} \mathbf{38} \quad \mathbf{a)} \quad z_1 \cdot z_2 &= 8(\cos 330^\circ + i \sin 330^\circ) = 4\sqrt{3} - 4i, \quad z_1 : z_2 = 0,5[\cos(-120^\circ) + i \sin(-120^\circ)] = \\ &= -\frac{1}{4} - \frac{\sqrt{3}}{4}i; \quad \mathbf{b)} \quad z_1 \cdot z_2 = 8(\cos \frac{11}{6}\pi + i \sin \frac{11}{6}\pi) = 4\sqrt{3} - 4i, \quad z_1 : z_2 = 0,5(\cos \frac{3}{2}\pi + \\ &+ i \sin \frac{3}{2}\pi) = -0,5i. \quad \mathbf{39} \quad \mathbf{a)} \quad z_1 = \frac{8}{5}\sqrt{10} - \frac{6}{5}\sqrt{10} \cdot i; \quad \mathbf{b)} \quad z_2 = -2\sqrt{2} - \sqrt{2} \cdot i; \end{aligned}$$

With the help of Moivre's theorem compute:

42 Užitím Moivreovy věty umocněte a výsledek převeďte do algebraického tvaru:

a) $\left(\cos \frac{\pi}{18} + i \sin \frac{\pi}{18}\right)^6$

c) $(1+i)^6$

e) $(-2\sqrt{3} - 2i)^{12}$

b) $\left(\cos \frac{3\pi}{32} + i \sin \frac{3\pi}{32}\right)^8$

d) $(1-i\sqrt{3})^5$

f) $(5\sqrt{3} - 5i)^7$

42 a) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$; b) $-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$; c) $-8i$; d) $16 + 16\sqrt{3}i$; e) $2^{24} + 0i$;
f) $-5 \cdot 10^6 \cdot \sqrt{3} + 5 \cdot 10^6i$. **43** $n = 12k + 1 \wedge k \in \mathbb{N}$ nebo $k = 0$.

46 Vypočítejte všechny druhé komplexní odmocniny

a) z čísla 4, b) z čísla -4 .

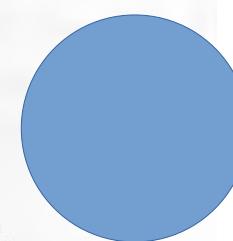
47 Vypočítejte všechny čtvrté komplexní odmocniny

a) z čísla i , b) z čísla $1-i$.

48 Vypočítejte všechny páté komplexní odmocniny z čísla 32.

49 Vypočítejte součet všech třetích komplexních odmocnin z čísla -2 .

50 Vypočítejte součet třetích mocnin všech čtvrtých odmocnin z čísla 1.



= Square root of

= 4-th root of

= 5-th root of

= sum of all third roots of

= sum of all third roots of

46 a) $z_{1,2} = 2(\cos k\pi + i \sin k\pi)$, $k \in \{0;1\}$; b) $z_{1,2} = 2[\cos(\frac{\pi}{2} + k\pi) + i \sin(\frac{\pi}{2} + k\pi)]$, $k \in \{0;1\}$.

47 a) $z_{1,2,3,4} = \cos(\frac{\pi}{8} + \frac{k\pi}{2}) + i \sin(\frac{\pi}{8} + \frac{k\pi}{2})$, $k \in \{0;1;2;3\}$;

b) $z_{1,2,3,4} = \sqrt[8]{2}[\cos(\frac{7}{16}\pi + \frac{k\pi}{2}) + i \sin(\frac{7}{16}\pi + \frac{k\pi}{2})]$, $k \in \{0;1;2;3\}$.

48 $z_{1,2,3,4,5} = 2(\cos \frac{2}{5}k\pi + i \sin \frac{2}{5}k\pi)$, $k \in \{0;1;2;3;4\}$. **49** 0. **50** 0.

53 Řešte rovnice s neznámou $z \in \mathbb{C}$:

a) $2z + 3\bar{z} = 5 + i$

b) $\left(2 - \frac{1}{i}\right)\bar{z} - 13 = 2(6,5i - z)$

c) $z\bar{z} - z = \overline{6 - 2i}$

d) $z(\bar{z} - 4) - 1 = 8i$

= Solve for complex z:

53 a) $z = 1 - i$; b) $z = 13 - 39i$; c) $z_1 = -1 - 2i, z_2 = 2 - 2i$; d) $z_1 = 1 - 2i, z_2 = 3 - 2i$.

55 Řešte rovnice s neznámou $z \in \mathbb{C}$:

a) $|z| = 1 + 2i + z$

b) $|z + i| = 2z + i$

c) $|z + 1| - 4i = z + 3$

d) $|z + 2 - i| = 5(z + 3i)$

55 a) $z = \frac{3}{2} - 2i$; b) $z = \frac{\sqrt{3}}{6} - \frac{1}{2}i$; c) $z = 2 - 4i$; d) $z = 1 - 3i$.

Find solutions of equations, plot them:

68 Řešte rovnice s neznámou $x \in \mathbb{C}$. Výsledek zapište nejprve v goniometrickém tvaru, pak ve tvaru algebraickém. Kořeny znázorněte v Gaussově rovině.

a) $x^3 - 27 = 0$

b) $x^4 + 16 = 0$

c) $x^6 - 1 = 0$

d) $x^3 - 64i = 0$

68 a) $x_{1,2,3} = 3(\cos \frac{2}{3}k\pi + i \sin \frac{2}{3}k\pi)$, $k \in \{0; 1; 2\}$, $x_1 = 3$, $x_{2,3} = -\frac{3}{2} \pm \frac{3\sqrt{3}}{2}i$;
b) $x_{1,2,3,4} = 2[\cos(\frac{1}{4}\pi + \frac{1}{2}k\pi) + i \sin(\frac{1}{4}\pi + \frac{1}{2}k\pi)]$, $k \in \{0; 1; 2; 3\}$, $x_{1,2} = \pm\sqrt{2} + \sqrt{2}i$, $x_{3,4} = \pm\sqrt{2} - \sqrt{2}i$;
c) $x_{1,2,3,4,5,6} = 1(\cos \frac{1}{3}k\pi + i \sin \frac{1}{3}k\pi)$, $k \in \{0; 1; 2; 3; 4; 5\}$, $x_{1,2} = \pm 1$,
 $x_{3,4} = \pm \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $x_{5,6} = \pm \frac{1}{2} - \frac{\sqrt{3}}{2}i$;
d) $x_{1,2,3} = 4[\cos(\frac{1}{6}\pi + \frac{2}{3}k\pi) + i \sin(\frac{1}{6}\pi + \frac{2}{3}k\pi)]$, $k \in \{0; 1; 2\}$, $x_{1,2} = \pm 2\sqrt{3} + 2i$, $x_3 = -4i$.

69 Řešte rovnice s neznámou $x \in \mathbb{C}$. Výsledky zapište v goniometrickém tvaru. Kořeny znázorněte v Gaussově rovině.

a) $x^3 - 1 - i = 0$

b) $x^6 - 1 + i\sqrt{3} = 0$

c) $(ix)^4 + \sqrt{3} - i = 0$

d) $(2x)^5 - 16 = 16i\sqrt{3}$

69 a) $x_{1,2,3} = \sqrt[6]{2}[\cos(\frac{1}{12}\pi + \frac{2}{3}k\pi) + i \sin(\frac{1}{12}\pi + \frac{2}{3}k\pi)]$, $k \in \{0; 1; 2\}$;
b) $x_{1,2,3,4,5,6} = \sqrt[6]{2}[\cos(\frac{5}{18}\pi + \frac{1}{3}k\pi) + i \sin(\frac{5}{18}\pi + \frac{1}{3}k\pi)]$, $k \in \{0; 1; 2; 3; 4; 5\}$;
c) $x_{1,2,3,4} = \sqrt[4]{2}[\cos(\frac{5}{24}\pi + \frac{1}{2}k\pi) + i \sin(\frac{5}{24}\pi + \frac{1}{2}k\pi)]$, $k \in \{0; 1; 2; 3\}$;
d) $x_{1,2,3,4,5} = 1 \cdot [\cos(\frac{1}{15}\pi + \frac{2}{5}k\pi) + i \sin(\frac{1}{15}\pi + \frac{2}{5}k\pi)]$, $k \in \{0; 1; 2; 3; 4\}$.

70 Uvedené rovnice s neznámou $x \in \mathbb{C}$ řešte dvěma způsoby. Buď jako rovnice kvadratické, nebo jako rovnice binomické.

a) $x^2 = 1 + i\sqrt{3}$

b) $x^2 + 2x + 5 = 0$

70 a) $x_{1,2} = \pm \frac{\sqrt{6}}{2} \pm \frac{\sqrt{2}}{2}i$; b) $x_{1,2} = -1 \pm 2i$.