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Abbreviations

ρ density [kg/m3]

~u velocity vector [m/s]

u velocity component in
x-direction [m/s]

v velocity component in
y-direction [m/s]

û specific internal energy [J/kg]

e specific total energy [J/kg]

h specific enthalpy [J/kg]

q specific heat [J/kg]

p pressure [Pa]

T thermodynamic temperature [K]

t time [s]

cp specific heat capacity at constant
pressure [J/kg/K]

cv specific heat capacity at constant
volume [J/kg/K]

f number of degrees of freedom [−]

r specific gas constant [J/kg/K]

k Boltzmann constant [kg ·m2/s2/K]

g gravitational acceleration [m/s2]

γ ratio of heat capacities [−]

c speed of sound [m/s]

(·)ξ partial derivative with respect to ar-
bitrary variable

x, y, z spatial coordinates

αbl stagger angle of blade [◦]

ι incidence angle [◦]



1. Introduction
In classical thermodynamics, the physical quantities referred as heat capacities plays vital
role in determination of thermal properties of given system. They essentially describe how
heat delivered to the system is distributed between energy related with thermodynamic
temperature and other forms of energy, typically expressed by internal energy. The whole
process of heat transfer in/out of the system is usually studied with restrictive condition,
stating that one chosen parameter of the system is being fixed. The following terms express
perhaps the most commonly used heat capacities.(

∂û

∂T

)
v

=

(
∂q

∂T

)
v

= cv,

(
∂h

∂T

)
p

=

(
∂q

∂T

)
p

= cp (1.1)

With cv resp. cp being specific heat capacities at constant volume resp. pressure. Note,
that the equations 1.1 are independent of the type of thermodynamic process or substance
going through the process.

According to the statistical thermodynamics, the equipartition theorem states, that in
equilibrium, each degree of freedom contributes 1

2kT to the average energy per molecule.
Thus by simple calculation one gets relation for specific internal energy, and subsequently,
specific heat capacity at constant volume

û =
1

2
frT cv =

(
∂û

∂T

)
v

=
f

2
r (1.2)

where f denotes number of degrees of freedom of one molecule, r is specific gas constant.
Considering further only systems of gaseous phase described by equation of state of

ideal gas, the various values of heat capacity ratio - γ, could be expressed, with using
Mayer’s relation, in the following way

γ =
cp
cv

=
cv + r

cv
=
fr/2 + r

fr/2
= 1 +

2

f
. (1.3)

Now, equipped with this information, one can view the study of flows with varied γ as a
series of cases where gases with different degrees of freedom were used. With respect to
the objectives of this work, following table summarizes given values of γ and link them
with the physical interpretation.

Table 1.1: Variation of heat capacity ratio

γ degrees of freedom - f physical interpretation

1.33 6 three and more atoms in molecule without
the vibrational degrees of freedom (not
considering straight molecules)

1.40 5 diatomic gas molecule without the
vibrational degree of freedom

1.66 3 monoatomic gas

2.00 (2) ”monoatomic gas in 2 dimmensions” or
shallow water analogy (Subsection 1.1)
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1.1 Analogy of shallow water equations with Euler equa-
tions for γ = 2

The physical meaning of first three values of γ in table 1.1 is rather clear. The most
commonly used value, γ = 1.4, sufficiently describes air in quite wide range of thermody-
namical states, and it is also considered as a standard value. If diatomic gas is considered
in higher temperatures, vibration of each atom in the molecule becomes large enough to
store some of the heat energy supplied to the system so one additional degree of freedom is
added, resulting in γ = 1.33. The monoatomic gas (γ = 1.66) is not used in experimental
studies for number of obvious reasons.

If we take a look on γ = 2 then no reasonable interpretation in terms of thermodynam-
ical properties can be assigned to this value. However, there is a useful similarity between
Euler equations of fluid motion and shallow water equations. This analogy can be used
while designing some experiments dealing with fluid flow around the objects. Especially
in the case of transsonic regimes of the flow around the turbine blades.

Consider the one-dimensional Euler equations for adiabatic flows written in terms of
ρ and u in matrix form (

ρ
u

)
t

+

(
u ρ
c2

ρ u

)(
ρ
u

)
x

=

(
0
0

)
(1.4)

where c =
√
Cγργ−1 denotes speed of sound in ideal gas with constant γ and C ∈ R is

constant depending on the specific internal energy of the system. These equations can be
also re-arranged using the theory of characteristics. In a new form there are employed
new variables called Riemann invariants, depending on the original variables

∂J+

∂t
+ (u+ c)

∂J+

∂x
= 0,

∂J−
∂t

+ (u− c)∂J−
∂x

= 0 (1.5)

where J± = u± 2
γ−1c are Riemann invariants. On the other hand, one can obtain exactly

one-dimensional shallow water equations in invariant form by setting γ = 2 and C = g
2

and substituting density ρ = ρ(x) for water height h = h(x).
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2. Mathematical model of compressible in-
viscid flow

The fluids studied in this work are considered to be compressible and inviscid and therefore
can be described by Euler equations for ideal gas.

Continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

Momentum equation

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 (2.2)

Energy equation

∂(ρe)

∂t
+∇ ·

(
(e+ p)ρu +

)
= 0 (2.3)

The system (2.1 - 2.3) is closed by the equation of state for ideal gas:

p = (γ − 1)

(
ρe− 1

2
ρ|u|2

)
(2.4)

There will be further considered only two-dimensional flows through the tip-section of
the last stage of steam turbine. Therefore the vector quantities in the above equations (2.1-
2.4) will consist only of two components, in x and y directions. Particularly, the velocity
will has form of u = (u, v). With respect to further proceeding the Euler equations can
be also expressed in more compact form

∂W

∂t
+ divx (F(W)) = 0 (2.5)

where W = [ρ, ρu, ρe] is the vector of conservative variables and its fluxes is represented by
F(W) = [ρu, ρu⊗ u + pI, (e+ p)ρu]. Therefore Euler equations are inviscid, no additional
models of turbulence are needed to close them, so now, the discretization procedure by
finite volume method will follow.
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3. Numerical solution
3.1 Finite volume method

Firstly, let us integrate Euler equations (2.5) over the fixed spatial domain∫
Ω

∂W

∂t
dV +

∫
Ω
divx (F(W)) dV = 0 (3.1)

where Ω ⊂ R2 is whole domain where equations (2.5) tend to solved and ∂Ω will denote
domains boundary (expected to be Lipschitz continuous). Now, with respect to Ω being
time independent and by using Gauss-Green formula, above equation can be written as

d

dt

∫
Ω

W(x, t) dV +

∫
∂Ω

F(W(x, t)) dS = 0 (3.2)

Since the above integral identity holds for any non-zero arbitrary control domain Ωi it could
be now rewritten to the following form of the system of ordinary differential equations

|Ωi|
dWi(t)

dt
= −

∑
j∈Ni

Fij · Sij (3.3)

where Ωi ∈ Ω =
⋃

Ωi and
⋂

Ωi = ∅, thus Ωi represents arbitrary finite volume cell,
assumed to be of polygonal, resp. polyhedral shape (in two, resp. three dimensions), see
Fig. 3.1. Consequently, the boundary ∂Ωi of Ωi consists of union of connected lines, resp.
polygonal faces. Furthermore, vector of conservative variables discretized in space using
finite volume method Wi(t) is expressed as

Wi(t) =
1

|Ωi|

∫
Ωi

W(x, t) dV. (3.4)

Finally, Ni denotes set of indices of finite volume cells neighboring with Ωi and Sij is normal
vector of face between cells i and j pointing to the cell j, with length equal to the area
of the face. Note that in the equation (3.3) have not been introduced any approximation
yet. The cell average value Wi(t) approximates values of W(x, t) in the cell with second
order of accuracy (for W(x, t) being smooth in Ωi)

Figure 3.1: Schematic illustration of FVM.
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3.2 Approximation of fluxes

Before writing down the equations (3.3) for all computational cells as a set of linear
algebraic equations one has to do one final step - approximate the fluxes Fij . Several
methods were developed for this purpose, however in this work is used so called HLLC
scheme [1].

The HLLC scheme is a member of the family of so called Godunov’s schemes which are
conservative numerical schemes for solving partial differential equations based on solving
exact or approximate Riemann problems at each inter-cell boundary. These were firstly
introduced by S.K.Godunov [2]. Moreover the HLLC scheme build on top of the HLL
scheme, presented by Harten, Lax and van Leer in [3].

The central idea of the HLL scheme is to solve Riemann problem at each cell rather
approximately than exactly in order to save some computational expenses. This is done by
neglecting intermediate (contact) wave, see Fig. 3.2. This approach has proven to be both
efficient and robust, but in certain two and three-dimensional problems poor resolution
of contact wave leads to unacceptable smearing of vortex sheets and shear waves [4].

Figure 3.2: Solution of the Riemann
problem with data UL and UL in the
x, t-plane. The three waves present
define four piece-wise constant states.
Reconstructed figure from [4].

In the case of HLLC scheme, the middle
wave is restored using techniques similar to
the ones used in derivation of HLL scheme.
Furthermore, the whole reconstruction of
intermediate wave involves several steps
which are briefly described as follows:

A) Compute pressure estimate p∗ from
known variables, ui, ρi, pi, i = L,R

B) Compute estimate of SL resp. SR,
speed of left resp. right wave from
variables ui, ρi, pi, p

∗, i = L,R

C) Compute HLLC flux from previous
variables.

Note that there are several choices how to
compute variables during steps I) - III), all
of them are based on integration of equation (3.2) in the rectangle [xL, xR] × [0, T ] in
x, t-plane followed by linear approximation of intermediate states. Complete description
of HLLC scheme is provided in i.e. [1].

3.3 Matrix-free LU-SGS numerical solver

Numerical solution of the system of non-linear ordinary differential equations (3.3) will
be carried out by matrix-free lower-upper symmetric Gauss–Seidel (LU-SGS) numerical
solver, implemented into OpenFOAM [5] by J.Fürst, see [6]. Short description of the
implemented solver adopted form the original article follows.

The numerical simulations further studied in this work are considered to have steady
state which will be the aim to reach in the computations. In order to do so, one can
rewrite equations (3.3) as follows

|Ωi|
Wn+1

i −Wn
i

∆ti
= −

∑
j∈Ni

(Fij · Sij)n+1 = −R(Wn+1)i (3.5)

where the time derivative has now meaning of pseudo-time marching and was replaced
backward difference using local value of time step, ∆ti, and R(Wn+1)i denotes residual
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in n+ 1 iteration. The residual can be replaced by linear approximation

−R(Wn+1)i ≈ −R(Wn)i −
∑
j

∂R(Wn)i
∂Wj

(
Wn+1

j −Wn
j

)
(3.6)

leading to the following equation∑
j

(
|Ωi|
∆ti

I +
∂R(Wn)i
∂Wj

)(
Wn+1

j −Wn
j

)
= −R(Wn)i (3.7)

Here, in order to construct matrix-free solver, the Jacobian matrix ∂R(Wn)i/∂Wj is
replaced by first order approximation of convective terms with Rusanov flux. Final form
of low order residual replacement for inviscid flows reads

R(W)loi =
1

2

∑
j∈Ni

λijWi +
1

2

∑
j∈Ni

(F(Wj) · Sij − λijWj) (3.8)

where λij is the spectral radius of Jacobian of F ·S, i.e. λij = |uij ·Sij |+ aij |Sij | with uij
being the velocity at the face between the cells i and j and aij is the sound speed.

Now rewriting LU-SGS algorithm for inviscid flow from original article one gets

Di∆W
(1)
i = −R(Wn)i −

1

2

∑
j∈Li

(
∆F(1)

j · Sij − λij∆W
(1)
j

)
(3.9)

and

Di∆Wi = Di∆W
(1)
i −

1

2

∑
j∈Ui

(∆Fj · Sij − λij∆Wj) (3.10)

where

Di =
|Ωi|
∆ti

+
1

2

∑
j∈Ni

λij , ∆W
(1)
i = W

(1)
i −Wn

i , ∆Wi = Wn+1
i −Wn

i ,

∆F(1)
i = F(W

(1)
i )− F(Wn

i ), ∆Fi = F(Wn+1
i )− F(Wn

i )

The summation indices Li = {j ∈ Ni : j < i} resp. Ui = {j ∈ Ni : j > i} here denote
sets of cells belonging to lower resp. upper of the system matrix. All the fluxes F(Wi) are
computed by previously described HLLC scheme.
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4. Results
In this part there will be discussed results of numerical simulations of two-dimensional
compressible flow through the tip-section linear blade cascade TR-U-6. The geometry and
configuration of the cascade is depicted on Fig. 4.2. The computational mesh consists
of approximately 82 000 cells of triangular shape which tend to grow in size towards the
inlet and outlet boundary in order to dissipate possible shock-waves interacting with those
boundaries, see Fig. 4.3. The mesh was created in open-source meshing software Gmsh.

The blade profile is designed with reversed curvature of suction side and the cascade
is of convergent-divergent form causing low change of flow direction. The blade chord
c = 0.15 m is given by the length measured along the linear part of the lower side of the
blade profile. The parameter s ≈ 0.1514 m denotes spacing between blades. The cascade
is in constant position during the simulations with stagger angle αbl = 79.28◦. Further
information about cascade geometric parameters and configuration can be found in [7] or
[8].

Figure 4.1: Scheme of linear blade cascade TR-U-6, adopted from [8].

Figure 4.2: Scheme of computational domain.
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Figure 4.3: Computational mesh. Figure 4.4: Detail of computational mesh.

The initial conditions were set as p = 65 × 103 Pa, u = [20,−110] m/s, T = 292 K
in whole computational domain for all the simulations. The boundary conditions were
prescribed according to the table (4.1) and are prescribed in all the cases of varying
heat capacity ratio. Thus γ is the only varying parameter being studied in numerical
simulations.

Table 4.1: Boundary conditions

u p T

inlet specified direction of
αI = 79.78◦, |u| is
calculated from
Riemann invariant
going along the
outward directed
characteristics

calculated from given
stagnation pressure,
p0 = 90× 103 Pa
using formulas 1 for
insentropic
compressible flow

calculated from total
temperature,
T0 = 292 K using
formulas 1 for
insentropic
compressible flow

outlet homogeneous
Neumann condition

fixed mean pressure,
pmean = 40× 103 Pa

homogeneous
Neumann condition

blade slip homogeneous
Neumann condition

homogeneous
Neumann condition

1)

p0
p

=

(
1 +

γ − 1

2
Ma2

) γ

γ − 1 ,
T0

T
= 1 +

γ − 1

2
Ma2, Ma2 =

|u|2

ρrT
, T =

γ − 1

r

(
e− 1

2
|u|2

)
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Figure 4.5: Mach number isolines, bold contour for Ma = 1, γ = 1.33.

Figure 4.6: Density field, γ = 1.33.
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Figure 4.7: Mach number isolines, bold contour for Ma = 1, γ = 1.4.

Figure 4.8: Density field, γ = 1.4.

10



Figure 4.9: Mach number isolines, bold contour for Ma = 1, γ = 1.66.

Figure 4.10: Density field, γ = 1.66.
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Figure 4.11: Mach number isolines, bold contour for Ma = 1, γ = 2.0.

Figure 4.12: Density field, γ = 2.0.
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Figure 4.13: Contours of Mach number for γ = 1.33, 1.4, 1.66, 2.

5. Conclusion
On the above series of Figs. 4.5 - 4.13 there are displayed fields of Mach numbers and
densities for various values of γ in the blade cascade. There is depicted inlet flow angle
αI = 79.78◦ which corresponds, due to the geometrical configuration of the blade cascade,
to the incidence angle ι = −0.5◦. One can observe small fluctuations downstream of the
normal shock-wave in both Mach number and density fields. The reason of this behavior
can be possibly explained by insufficient performance (instability) of HLLC flux scheme
in this (inviscid) case leading to small unsteady changes in the flow when large gradients
are present. There can be also seen slight effect of numerical viscosity in the vicinity of
the trailing edge.

The main focus of the numerical experiments was variation of γ. This was proceeded
under constant pressure difference between inlet and outlet, therefore isentropic Mach
number, Mais, changed its values in the flow field causing the changes in position of
normal shock-waves, see Fig. 4.13. Subsequently, regarding to this fact, the character of
flow fields upstream of the normal shock-wave of γ = 2 is quite similar but the intensity
of the fields is varying due to the faster resp. slower expansion being a consequence of
higher resp. lower value of γ.

As mentioned in Section 1, the analogy of shallow water equations with Euler equations
for adiabatic flows offers handful and relatively cheap method in experimental studies
during the design process of turbine blades. This analogy is archieved by adjusting the
corresponding parameters of these equations. However in last few decades the performance
of computers along with numerical codes has improved offering even cheaper, faster and
more precise option for turbine blades designing.
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[8] P. Straka, J. Př́ıhoda, and M. Bobč́ık. Simulation of Compressible Flow Through the
Tip-Section Turbine Blade Cascade with the Unsteady Interaction of the Shock Wave
with Shear Layers. 01 2016.

14


	Introduction
	Analogy of shallow water equations with Euler equations for = 2

	Mathematical model of compressible inviscid flow
	Numerical solution
	Finite volume method
	Approximation of fluxes
	Matrix-free LU-SGS numerical solver

	Results
	Conclusion
	References

