
Institut de Mathématiques de Toulon

INTERNSHIP PROJECT

STUDY OF DAM BREAK PROBLEM WITH FOCUS ON
ADAPTIVE MESH REFINEMENT

Author: Josef Musil

Supervisor: Fréderic Golay

Year: 2019

Abbreviations
u velocity vector [m/s]

u velocity component in
x-direction [m/s]

v velocity component in
y-direction [m/s]

w velocity component in
z-direction [m/s]

ρ density [kg/m3]

ρW density of water phase [kg/m3]

ρA density of air phase [kg/m3]

p pressure [Pa]

T thermodynamic temperature [K]

α, ϕ volume fraction function [−]

µ kinematic viscosity [m2/s]

σ surface tension [N/m]

κ surface curvature [m−1]

g gravitational acceleration [m/s2]

g vector of gravitational
acceleration [m/s2]

t time [s]

x, y, z spatial coordinates

(·)ξ partial derivative with
respect to arbitrary variable

c0 artificial speed of sound [m/s]

s entropy function [−]

φ entropy flux [−]

S numerical entropy production [J/kg]

h height of free surface [m]

Introduction
The computational fluid dynamics (CFD) is scientific-engineering discipline primarily fo-
cused on solving partial differential equations (PDE) of fluid mechanics by means of com-
putational machines. This discipline has developed as a consequence of fact that majority
of these equations are impossible to solve with analytic approach. In order to get some form
of approximation of the solution, given partial differential equation (or equations) which
describes certain physical phenomenon has to be re-expressed in suitable form for com-
putation and then solved numerically. There have been developed several approaches to
handle this task. From perspective of this work, these can be distinguished as mesh-based
methods and mesh-free methods. The latter involving large number of other subsequent
methods, i.e. smoothed particle hydrodynamics (one of the earliest), will not be further
discussed.

This work will focus solely on finite volume method (FVM), mesh-based method which
is considered to be widely used for solving problems in industrial sector. Furthermore,
attention will be paid to technique called Adaptive Mesh Refinement (AMR), which serves
to effectively refine computational mesh in areas where physical phenomena need to be
captured with more precision and, otherwise, in order to maintain overall number of
cells within reasonable limit, coarse areas where steep spatial gradients or large temporal
changes of physical quantities are not present.

At first in this work will be provided a brief summary/review of current state of art
of AMR methods. The review will be mostly organized as a collection of ideas and facts
borrowed from scientific literature and articles which already cover this topic both in wide
and deep. Afterwards, performance of three numerical solvers which use AMR technique
will be tested on 2D dam-break problem without obstacle. Comparison with experimental
results will be also made in order to validate numerical models with physical reality. The
main focus of this work is to provide some explanation and tutorial how to set-up, run
(and possibly post-process) aforementioned computational cases of dam-break problem.

1. Adaptive mesh refinement
The adaptive mesh refinement method (AMR) is a process where cells of computational
mesh are split into smaller non-overlapping, disjunct cells or on the contrary they are
merged together, see Figure 1 and Figure 2. This process serves to compute development
of given physical system with more spatial (and also temporal) resolution in region of
higher interest (i.e. relatively high gradients of physical quantities), or otherwise save
computational effort by lowering the resolution in regions where our system is developing
slowly or small gradients are present only. Within numerical simulation, the mesh refine-
ment/coarsening usually takes place (if prescribed) before advancing in time to the next
time step.

Figure 1: Two layer mesh refinement of Cartesian mesh.

1

Figure 2: Two layer mesh refinement of unstructured, polyhedral mesh.

On the Figures 1 and 2 there are shown two distinct types of meshes, namely struc-
tured and unstructured. During the refinement/coarsening procedure some interpolation
technique has to be introduced while assigning field values in new - splited/merged cells
in order maintain spatial accuracy of computation and other important qualities, e.g.
conservation of mass.

On unstructured mesh, this task largely depends on geometrical configuration of (in
general) polyhedral cells. From that configuration, determined by position of cells vertices
and mass center, coefficients for interpolation are obtained and fields values in new cells can
be assigned afterwards. This whole task is harder do on unstructured meshes, because cells
labeling is un-ordered and requires list of cells connectivity (changing at each re-meshing).
Unlike the Cartesian meshes.

On Cartesian meshes, it is much easier to propose such interpolation algorithm since
the geometrical configuration of mesh cells (ordering) is much simpler. Therefore there
can be introduced algorithms that take advantage of such cells ordering. These algorithms
(also data structures) are called quadtree of octree, depending whether one is dealing with
2D or 3D geometry, respectively.

1.1 Quadtree/Octree family of algorithms

In this section, there will be given brief description of quadtree algorithm. The octree
algorithm can be than considered as straightforward extension of quadtree in three spatial
dimensions. The literature dealing with comprehensive description of these algorithms is
vast, see e.g. [1], [2] and [3]. Note that quadtree algorithm is used not only in compu-
tational fluid dynamics but also for example in image storage and compression, effective
storing of curves, storing sparse data etc.

In terms of data structure a quadtree is a tree-based hierarchical structure which
stores information of computational cell’s size and connectivity. The algorithm and data
structure can be demonstrated on the most simple case of square computational domain,
Ω = [0, 1]× [0, 1], as follows.

Figure 3: Cartesian mesh (left) with example of refinement history represented by
quadtree data structure (right). Empty symbols in quadtree represent parents and
full symbols represent leaves.

2

The attributes of computational cells can be stored in quadtree structure in several
different ways, usually depending on suitable tools of chosen programming language. For
example in C/C++ language the structure can be represented by using a linked list. With
using pointers a parent cell is connected with its child cells (which could be another,
lower level, parents or leaves). The example of a such structure is described as follows.
Numbering system for child cells in the each parent cell is depicted on Figure 4.

Figure 4: Refined mesh with cell labels (left). Scheme for walking through the cells
on particular refinement level (right).

The cell labeling is organized as follows:

I. On each level, cell numbering continues with bottom-left cell and then clockwise
(according to the scheme on Figure 4)

II. If current cell is further refined, labeling continues on next level

III. If bottom-right cell is reached (labeled) on given level, labeling continues on the
previous level according I. and II. until 1st level cells are all labeled.

Furthermore, the quadtree is constructed via pointers. Each parent points to its children
and its neighbors. If node in tree has no children (NULL pointer) then it is called leaf
and represent corresponding computational cell. The cells can also point to any other
attributes, such as geometrical data and physical quantities.

From the perspective of numerical computation the construction of a good numerical
scheme plays important role here. In majority of codes it is required that refinement
of neighboring cells differ at most of one level. If there is difference in refinement, the
numerical flux needs to be designed to obey mass conservation. This is mostly done
through interpolation of coarser cells to finer ones and vice-versa which can be described
as auxiliary ghost cells at the coarse-fine cells interface, see Figure 5.

Figure 5: Example of interpolation procedure (Basilisk). At first, blue value is
constructed from four black values by simple averaging. (Interpolation from fine-to-
coarse is often referred as restriction). Secondly, red values are interpolated using
active points and blue one (coarse-to-fine interpolation is here referred as prolonga-
tion). Finally, numerical scheme for black cell in circle can be constructed (here 3x3
stencil, hence 2nd order spatial accuracy). Picture is taken from [4].

3

So far the quadtree algorithm was here demonstrated on rectangular computational
domain and each leaf of the tree here represented actual computational cell. This does not
need to be the case in general. Some works employ so called block-based AMR technique
for Cartesian meshes, e.g. [5] and [6], and some use curvilinear, structured, body-fitted
meshes, e.g. [7], [8], with further improvements of allowing the mesh to adapt anisotropi-
cally (quadtree is heavily modified in this case).

In the block-based technique the leaf in quadtree (or any other tree-structure) now
represent block of predefined number of cells, thus leading to much lighter tree structure
than cell-based approach, but, with losing the possibility to adapt each cell independently.
When arbitrary block is refined resp. coarsened, the new blocks resp. block contain(s) the
same amount of original cells, e.g. 8× 8-block is refined into four 8× 8-blocks (see Figure
6, 3rd block).

Figure 6: Example of computational domain divided into 6 initial (bold lines) blocks,
each treated with its own quadtree, block-based structure. The additional treatment
of communication through block boundaries is expressed by arrows. This approach
enables to treat more complex geometries.

As mentioned above, the block-based approach can be also used to deal with more
complex computational domains with curved boundaries. This technique is employed in
[9].

Figure 7: Body-fitted adapted mesh after several re-finements. Grid blocks are
shown with boldlines. Picture is taken from [10].

4

2. Computational case
Throughout the rest of this work there will be studied two-dimensional dam-break problem
without the obstacle from perspective of several numerical solvers which are implemented
in different software. In all cases the geometry, initial conditions and initial mesh are set
the same, according to the experimental setting in [11]. Figure 8 shows initial setting with
water column, represented by red color situated in left of a computational domain.

Figure 8: Dam-break case study, initial set-up.

The computational domain is given by Ω = {[x, y] ∈ E2, 0 ≤ x ≤ 4, 0 ≤ y ≤ 3}.
The domain is discretised in Cartesian way with 64×48 quadrilateral cells and during the
execution, in of all the solvers the level of maximal refinement is set to 4. It means that the
minimum size of smallest computational cell is 16 times less than the original/initial one.
Boundary conditions are considered as free-slip walls with total pressure set to be zero
at the top wall. Specific realization of these boundary conditions is software-dependent.
Initial velocity is set as zero in whole domain (or some negligible value is prescribed to
the water column at the start in some cases). All the numerical simulations are executed
up to time T = 0.8s and the results then compared also with experimental data [11].

5

3. BBAMR
In this section there is described numerical solver BB-AMR (Block-Based Adaptive Mesh
Refinement) developed by T.Altazin, M.Ersoy, F.Golay, D.Sous and L.Yushchenko. The
software is written in Fortran 90 programming language. More detailed description of the
solver can be found in [5].

The aim of the solver is to provide computationally efficient tool for solving hyper-
bolic systems with adaptive mesh refinement based on (unstructured) block computational
mesh. Here, the mesh refinement is based on numerical density of entropy production func-
tion which provides quite general approach for indicating numerical errors in all hyperbolic
problems without shock waves. In order to maintain efficiency of the solver, phase inter-
face sharpening is handled by adding specially designed source terms to right hand side
of governing equations (3.1, 3.4 and 3.2) which are then solved with fractional inner time
step procedure.

3.1 Governing equations

The governing equations which describe compressible low Mach two-phase flows in BBAMR
are presented in this section.

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

∂ϕ

∂t
+ u · ∇ϕ = 0 (3.2)

ρ = ϕρA + (1− ϕ)ρW (3.3)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ρg (3.4)

The equation (3.1) represents mass conservation law. Here ρ and u denotes for density
and velocity field respectively. The two-phase model of mixture of water and air is here
managed by advection of coloring function, equation (3.2). Furthermore, density field ρ
is defined by equation (3.3) as a linear combination of water density ρW and air density
ρW . The equation (3.4) represent conservation of momentum. Here, p stands for pressure
and g for gravitational acceleration.

For the purpose of closing the system of equations (3.1-3.4), the artificial pressure law
is introduced here

p = c2
0

(
ρ−

(
ϕρA + (1− ϕ)ρW

))
+ p0 (3.5)

Here constant c0 refers to artificial speed of sound, chosen as a compromise between
the limits of compressible effects, the rate of numerical diffusion and a reasonable CFL
constraint. The value was here chosen as c0 = 20 m/s, [5],[12].

The refinement criterion is determined by numerical entropy production inequality

S :=
∂s

∂t
+∇ ·ψ ≤ 0 (3.6)

where (s, ψ) denotes convex entropy-entropy flux pair (thus the sign in the inequality is
the opposite than physical entropy) and depend on conservative variables. Here, in the

6

context of two-phase compressible flows, the entropy is expressed as

s = 1
2ρu

2 + c2
0ρ ln ρ− c2

0(ρW − ρA)ϕ (3.7)

and the entropy flux is given by

ψ =
(

1
2ρ|u|

2 + c2
0ρ(ln ρ+ 1)

)
u (3.8)

Mesh refinement parameters are then based on comparison of ratio between local entropy
production (production within given block represented by corresponding initial cell) and
global entropy production (in whole computational domain) with pre-defined threshold
values:

• if
Sblock
Sglobal

≤ αmin the mesh in corresponding block is refined

• if
Sblock
Sglobal

≥ αmax the mesh in corresponding block is coarsened.

Here 0 ≤ αmin ≤ αmax ≤ 1 represents user-defined threshold values for refinement/coars-
ening the mesh.

3.2 Numerical schemes

The system of equations (3.1, 3.2 and 3.4) is discretized by finite-volume method and after
that solved numerically. The semi-discretized form of aforementioned equations reads as
follows

∂wk(t)

∂t
+

1

|Ck|
∑
a

|∂Ck/a|F
(
wk(t),wa(t),nk/a

)
= 0 (3.9)

where wk(t) denotes spatial mean value in arbitrary computational cell Ck of a vector of
conservative variables, w(t,x) = (ρ, ρu, ρϕ)T . Additionally, |Ck| denotes N -dimensional
volume of computational cell Ck and |∂Ck/a| denotes (N−1)-dimensional volume of ∂Ck/a
face between cells k and a where N represents spatial dimension of computational problem.
Numerical flux of conservative variables at the interface k/a is denoted by F

(
wk(t),wa(t)

)
and similarly nk/a stands for for unit normal vector on Ck/a pointing from k to a.

The time-step integration is realized by second order Adams-Bashforth scheme with-
out local time stepping. Hence temporally discretized equation (3.9) reads as

wk(tn+1) = wk(tn)− δtn
|Ck|

∑
a

|∂Ck/a|Fn

− δt2n
2δtn−1|Ck|

(∑
a

|∂Ck/a|Fn −
∑
a

|∂Ck/a|Fn−1
)

+ S (3.10)

Here δti denotes i−th timestep and Fi = F
(
wk(ti),wa(ti),nk/a

)
. On right-hand side of

equation (3.10) there is added extra source term S =
(
Sc, Sc(ρA − ρW), Scu(ρA − ρW)

)T
in contrast of equation (3.9) serving as a phase-interface sharpening mechanism in region
where both water and air phases coexist. Definition of the parameter Sc can be found in

7

[5]. The numerical flux Fi is computed using second order MUSCL scheme, for details see
[13]. The same discretization method as described by equation (3.10) was used for entropy
production (3.6).

3.3 Setting the case

The setting of the computational case will be described in this part. Once the BBAMR
software is compiled the input file has to be created. We suppose that input file damBreak.inp
is located in $HOME/BBAMR/exec. The file is listed in Appendix section, here. Most of the
important parameters used damBreak.inp file are explained within comments in the file.
Some parameters are referenced with double hash symbol, i.e. NRMA #NRMA#. This is
because we want to manage these values by shell script.

The following bash script (presumed to be located in $HOME/BBAMR/exec/run dam.sh)
is here also needed to manage the code run with AMR procedure and adds some output,
useful for post-processing. Note that the code here (as well as in other case) is executed
in parallel, on 4 cores (nproc=4).

1 #bin . sh
2 s t a r t =‘date +%s ‘
3 nc=1
4 nproc=4
5 N=100
6

7 cp dam . inp bbamr . inp
8 mkdir −p Dam data/ case 00$nc
9

10 sed − i ’ s/#NRMA#/4/g ’ bbamr . inp # max re f inement l e v e l
11 sed − i ’ s/#NRMA init#/4/g ’ bbamr . inp # m a x i n i t i a l r e f inement l e v e l
12 sed − i ’ s/#VCDE#/7.5/g ’ bbamr . inp # lower t r e s h o l d f o r re f inement
13 sed − i ’ s/#VCRA#/9/g ’ bbamr . inp # upper t r e s h o l d f o r re f inement
14 sed − i ’ s/#TFIN#/1.0/g ’ bbamr . inp # f i n a l time
15

16 . / convert mai
17 . / bbamr2tecamr
18 . / bbamr2tec
19 mv tecamr . dat Dam data/ case 00$nc /dam amr 0 . dat
20 mv t e c p l o t . dat Dam data/ case 00$nc / dam tec 0 . dat
21

22 f o r i in $ (seq 1 $N)
23 do
24 mpirun −np $nproc . / bbamr
25 . / bbamr2tecamr
26 mv tecamr . dat Dam data/ case 00$nc /dam amr $i . dat
27 . / bbamr2tec
28 mv t e c p l o t . dat Dam data/ case 00$nc / dam tec $ i . dat
29 . / amr
30 mv amr . dat Dam data/ case 00$nc / dam bloc $ i . dat
31 end=‘date +%s ‘
32 runtime=$ (($end−$ s t a r t))
33 p r i n t f ”\n”
34 p r i n t f ”Computation time : ”
35 echo ”Computation time : $runtime ”
36 p r i n t f ”\n\n”
37 done
38

39 rm s o l b i n ∗ bbamr . inp

Finally, to run the code (in parallel, with AMR), user just need to execute bash script and
redirect the output to the log file by

1 sh run dam . sh > l og

8

3.4 Post-processing the numerical results

In order to post-process the output file (log) of the numerical computation, namely, to get
the dependency of number of computational cells and computational time on simulation
real time, there is provided small shell script (postProc BBAMR.sh) to handle this task.

1 grep − i −B 16 ’ Average ’ l o g 1 > f oo
2 awk ’ { f o r (i =1; i<=NF; i++) i f ($ i==”T=”) p r i n t $ (i +1)} ’ f oo > foo1
3 awk ’ { f o r (i =1; i<=NF; i++) i f ($ i==”Average ”) p r i n t $ (i +2)} ’ f oo > foo2
4 cat foo2 | awk ’ { sum+=$1 ; p r i n t sum} ’ > summed
5 awk ’ { f o r (i =1; i<=NF; i++) i f ($ i==”Nombre” && $ (i +3)==”c e l l u l e s , ”) p r i n t $ (i +7)} ’ l o g 1

> foo3
6 paste foo1 summed foo3 | column −s $ ’ \ t ’ −t > postProc . dat
7 sed − i ’ 1 s /ˆ/0.00000E+00 0.000 3072\n/ ’ postProc . dat
8 rm foo foo1 foo2 foo3 summed

The processed results can be displayed for example by gnuplot software. Furthermore,
the other numerical results are outputted by BBAMR software in the form suitable for
ParaView processing (Tecplot files).

9

4. OpenFOAM
In this section there will be provided short description of OpenFOAM solver used for
numerical computation of two-phase VOF mathematical model based on the Navier Stokes
equations for two incompressible, isothermal immiscible fluids. The OpenFOAM solver
(interIsoFoam) solves the Navier Stokes equations for two incompressible, isothermal
immiscible fluids. That means that the material properties are constant in the region
filled by one of the two fluid except at the interphase. The term expressing dependency
field of a mixture is similar as in the BBAMR case. But here the coloring function (denoted
by α(x, t)) describes density field in exactly opposite way, i.e. α = 1 where only water
phase is present, α = 0 for only air phase.

4.1 Governing equations

Governing equations of complete mathematical model in detailed form are presented
hereby.

∇ · u = 0 (4.1)

∂α

∂t
+∇ · (αu) = 0 (4.2)

ρ = αρW + (1− α)ρA (4.3)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

[
µ
(
∇u + (∇u)T

)]
− x · g∇ρ− σκ∇α (4.4)

Here u denotes velocity vector, α is phase fraction field (coloring function), ρ is density,
p is pressure, µ represents kinematic viscosity, g denotes gravitational acceleration, σ is
surface tension and κ = −∇·(∇α|∇α|−1) is surface curvature. Density field is represented
in the same fashion as in the BBAMR software, by linear combination of water density
and air density, ρW and ρA respectively.

In order to obtain proper coupling of velocity and pressure fields while solving these
equations numerically, there is employed PISO algorithm where equations for velocity field
are coupled with appropriately modified Poisson equation for pressure and then are solved
simultaneously with the interface advection equation. For more details on implementation
of PISO algorithm in OpenFOAM see e.g. [14].

4.2 Numerical schemes

There are two techniques handling with phase interface transport in OpenFOAM. First
is called MULES - Multi-dimensional Universal Limiter for Explicit Solution and it uses
advantage of modified advection term, in equation 4.1

∇ · (αu)
modif.−−−−→ ∇ · (αu) +∇ ·

(
α(1− α)ur

)
where ur = uwater−uair is velocity vector of relative movement of phases. The additional
term is called compression term and serves to compress/sharpen phase interface, smeared
by numerical diffusion. This techinque is employed in interFoam solver. More detailed
description can be found in e.g. [15], [16].

The second technique how to deal with the phase interface sharpening is based on
explicit geometrical reconstruction and advection of the phase interface. At first the phase
interface is reconstructed using volume fraction field and then, with using velocity field,
the interface is advected through each computational cell. This all is implicitly coupled

10

with momentum equation through iteration loops ensuring conservation of mass. This
technique is is employed in interIsoFoam solver and the algorithm itself is named as
isoAdvector. For more information see original article [17] or tutorial paper [18].

The numerical schemes used for discretization of spatial terms in equations (4.2) and
(4.4) solved within the PISO algorithm are specified in file system/fvSchemes which
is enclosed in Appendix, here. All the spatial terms are of second order of accuracy.
Integration in time is performed by Crank-Nicolson scheme of second order accuracy. More
detailed description of used numerical schemes can be found in e.g. [14] or OpenFOAM
code documentation, [19].

4.3 Setting the case

This section provide some more detailed description of setting up and running 2D dam-
break with AMR computational case in OpenFOAM [20] in order to make it more acces-
sible to person who is less familiar (or possibly not at all) with this software.

First of all, in the case of not having OpenFOAM installed, the user is pointed to
follow the instructions on: https://www.openfoam.com or https://www.openfoam.org.
Hereafter, there will be presented step-by-step setting in version OpenFOAM-v1812 in the
rest of this section. The simplest way how to proceed with setting up the 2D dam-break
case is to copy and modify an already existing tutorial case. This can be done in Linux
terminal as follows.

1 mkdir $HOME/OpenFOAM/my dam
2 cp −r $FOAM TUTORIALS/mult iphase / interIsoFoam/damBreak/
3 $HOME/OpenFOAM/my dam

Now, we should have a new folder named my dam and within it another folder, damBreak,
copied from OpenFOAM tutorials.

Next, let us look onto default computational mesh in this tutorial case. The mesh
itself is here created by using blockMesh utility and then can be displayed with ParaView
visulization software, which can be compiled to cooperate with OpenFOAM as a third-
party visualization software. By executing following commands in terminal

1 cd $HOME/OpenFOAM/my dam/damBreak
2 blockMesh
3 paraFoam

we find out that our mesh deals with 2D dam-break problem with obstacle composed as
structured, rectangular mesh, see Figure 9

Figure 9: Structured, rectangular mesh created in OpenFOAM tutorial case - 2D
dam-break problem with obstacle.

11

https://www.openfoam.com
https://www.openfoam.org

Note: If paraFoam command does not work and still ParaView is installed on your com-
puter and works (can be launched by executing paraview) there exist a trick to load
OpenFOAM case by creating empty file called e.g. damBreak.foam by

1 touch $HOME/OpenFOAM/my dam/damBreak/damBreak . foam

and then open this file in ParaView. In order to create Cartesian mesh we have to modify
source file blockMeshDict, needed by blockMesh utility to construct new mesh. The file
is located at

1 cd $HOME/OpenFOAM/my dam/damBreak/ system

and after modification should read as described in Appendix, here. The structure and
input definitions in blockMeshDict file can be found in various examples through scientific
literature, code documentation and OpenFOAM tutorials, i.e. see [21],[22]. The output
mesh without obstacle after re-running blockMesh command should now look like the
one on Figure 10.

Figure 10: Structured, rectangular mesh for 2D dam-break problem.

Now, since the goal of the numerical computation is to test and compare adaptive
mesh refinement (AMR) we proceed with setting up this feature. Unfortunately, there
is implemented only AMR in 3D sense in OpenFOAM, which means that only Octree
algorithm in 3D cases is supported (in version OpenFOAM-v1812). In order to run AMR
in 2D there was used Quadtree mesh-refinement algorithm developed for OpenFOAM by
Luca Cornolti [23], see also works [24]. It can be downloaded and compiled as described
below.

1 cd $HOME/OpenFOAM/my dam/damBreak
2 g i t c l one https : // github . com/ k r a j i t /dynamicRefine2DFvMesh . g i t
3 cd dynamicRefine2DFvMesh/ s r c
4 wmake

Now, we should be able to use this AMR algorithm in our simulation. Moreover, if
user is interested in AMR performance, few lines of code which output time consump-
tion of the re-meshing procedure can be added to files dynamicRefine2DFvMesh.H and
dynamicRefine2DFvMesh.C in folder /src. Changes in original files are marked by green
color.

12

• $HOME/OpenFOAM/my dam/damBreak/dynamicRefine2DFvMesh/

src/dynamicRefine2DFvMesh.H

.
65 //− Protected c e l l s (u s ua l l y s i n c e not hexes)
66 PackedBoolList p r o t e c t e d C e l l \ ;
67 //- Time spent performing interface advection
68 scalar remeshingTime ;
69

.

174 //− Update the mesh f o r both mesh motion and topology change
175 v i r t u a l bool update () ;
176 scalar remeshingTime() const
177 return remeshingTime ;
178

.

• $HOME/OpenFOAM/my dam/damBreak/dynamicRefine2DFvMesh/

src/dynamicRefine2DFvMesh.C

.
873 dynamicRefine2DFvMesh : : dynamicRefine2DFvMesh (const IOobject& i o)
874 :
875 dynamicFvMesh (i o) ,
876 meshCutter (∗ t h i s) ,
877 dumpLevel (f a l s e) ,
878 nRe f inement I t e ra t i on s (0) ,
879 p r o t e c t e d C e l l (nCe l l s () , 0) ,
880 remeshingTime (0)
881

882 {
883

.

1030 bool dynamicRefine2DFvMesh : : update ()
1031 {
1032 //create time counter
1033 scalar remeshingTime start = time().elapsedCpuTime();
1034

.

1237 topoChanging (hasChanged) ;
1238 //print out global nuber of cells after refienment/un-refinement
1239 Info << ”GlobalCells ” << globalData().nTotalCells() << endl;
1240 // compute time spent with adaptive mesh refinement
1241 remeshingTime += (time().elapsedCpuTime() - remeshingTime start);
1242 Info << ”Mesh refinement: time consumption = ”
1243 << scalar(100*remeshingTime /(time().elapsedCpuTime() + SMALL))
1244 << ”%” << endl;
1245

1246 r e turn hasChanged ;
.

And, if above proposed performance check modification is done, we need to recompile the
2D AMR code again.

1 wmake

Now we have to set some parameters of AMR in file dynamicMeshDict. So change
folder using the terminal

13

1 cd $HOME/OpenFOAM/my dam/damBreak/ constant

and here edit aforementioned file as follows.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” constant ” ;
14 ob j e c t dynamicMeshDict ;
15 }
16 // ∗ //
17

18 //dynamicFvMesh dynamicRefineFvMesh ;
19 dynamicFvMesh dynamicRefine2DFvMesh ;
20

21 dynamicRefine2DFvMeshCoeffs{
22

23 nBufferLayersR 2 ;
24

25 // How o f t en to r e f i n e
26 r e f i n e I n t e r v a l 1 ;
27

28 // F i e ld to be re f inement on
29 f i e l d alpha . water ;
30

31 // Ref ine f i e l d inbetween lower . . upper
32 l owerRe f ineLeve l 0 . 1 ;
33 upperRef ineLeve l 0 . 9 ;
34

35 // I f va lue < u n r e f i n e L e v e l u n r e f i n e
36 u n r e f i n e L e v e l 10 ;
37

38 // Have s lower than 2 :1 re f inement
39 nBuf ferLayers 1 ;
40

41 // Ref ine c e l l s only up to maxRefinement l e v e l s
42 maxRefinement 4 ;
43

44 // Stop re f inement i f maxCells reached
45 maxCells 150000;
46

47 // Flux f i e l d and corre spond ing v e l o c i t y f i e l d . Fluxes on changed
48 // f a c e s get r e c a l c u l a t e d by i n t e r p o l a t i n g the v e l o c i t y . Use ’ none ’
49 // on s u r f a c e S c a l a r F i e l d s that do not need to be r e i n t e r p o l a t e d .
50 c o r r e c t F l u x e s
51 (
52 (phi none)
53 (nHatf none)
54 (rhoPhi none)
55 (alphaPhi none)
56 (ghf none)
57 (phi0 none)
58 (dVf none)
59) ;
60

61 // Write the re f inement l e v e l as a v o l S c a l a r F i e l d
62 dumpLevel t rue ;
63 } ;
64

65

66 // ∗∗∗ //

14

Coefficients in this file are of the following meaning

refineInterval specifies how often mesh refinement should be performed
field specifies which field the dictionary shall use to determine mesh

refinements,fields can be scalar or vector, here is used coloring
function named alpha.water, one field can be specified

lowerRefineLevel, these specify the limits of when to trigger mesh refinement or
upperRefineLevel coarsening
unrefineLevel specifies the max number of times the cells can be coarsened,

typically set to be a large number of levels
maxRefinement maximum number of layers of refinement that a cell can experi-

ence
nBufferLayers specifies how many layers the mesh must hold a cell size before

proceeding to the next level of refinement (or coarsening)
maxCells refinement will not exceed this maximum number of cells
correctFluxes list of fields that require flux correction, for each pair, specify a

flux field and corresponding velocity field
dumpLevel writes the refinement level for each cell as a field

Description of above mentioned coefficients is taken from [25] where user can found more
detailed explanation.

Also, some changes need to be made in solver settings. All of them are listed in
Appendix. Precise meaning of parameters/coefficients in those files are out of the scope
of this work and their meaning can be found in various OpenFOAM documentation, [19],
[26].

Now we are ready to run the case. All the other dictionary files i.e. defining boundary
conditions, physical and turbulence properties do not need to be modified. They should
be already fine from tutorial setting. Executing the solver could be done either manually
by executing commands

1 cd $HOME/OpenFOAM/my dam/damBreak
2 cp −r 0 . o r i g 0
3 blockMesh
4 decomposePar
5 s e tF i e l d s
6 mpirun −np 4 interIsoFoam > l og

or by running shell scripts ./Allrun or ./Allrun-parallel also in damBreak/ folder.

Note: In case of running on single core, skip decomposePar command and for solver
executing just run

1 interIsoFoam > l og

4.4 Post-processing the numerical results

Most of the post-processing procedure is generally done in some convenient visualization
software along with extracting the necessary information from data files. There is provided
interface for reading OpenFOAM data as done in Subsection 4.3. There also exist variety
of useful tools, compiled with OpenFOAM, dealing with data extraction. These tools can
be executed during the numerical computation as well as after it.

15

In order to compare numerical simulations of 2D dam-break cases between each other
and also with experiment we need

I. evolution of number of cells in computational domain during time

II. relation between CPU time and physical time

III. qualitative comparison of free surface

IV. quantitative comparison of free surface

At first, the author did not found how to extract total number of cells by means of
OpenFOAM tools, therefore there is used an advantage of additional output coded in
source file dynamicRefine2DFvMesh.C in 4.3. For generating desired data file is then used
simple bash script executed in /damBreak folder.

1 awk ’ { f o r (i =1; i<=NF; i++) i f ($ i==”Time” && $ (i +1)==”=”)p r in t $ (i +2)} ’ \
2 l og . interIsoFoam > foo1
3 awk ’ { f o r (i =1; i<=NF; i++) i f ($ i==”Globa lCe l l s ”) p r i n t $ (i +1)} ’ \
4 l og . interIsoFoam > foo2
5 paste foo1 foo2 | column −s $ ’ \ t ’ −t > g l o b a lC e l l s . dat
6 rm foo1 foo2

Produced output, globalCells.dat, can be then displayed by i.e. gnuplot

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

To
ta

l n
um

be
r o

f c
el

ls
 [-

]

Physical time [s]

OpenFOAM

Figure 11: Evolution of number of computational cells
through physical time.

Secondly, time evolution of numerical computation is obtained with help of Open-
FOAM following command.

1 foamLog log . interIsoFoam

This produces couple of files consisting of solver performance data, e.g. residuals. The file
of our interest is logs/clockTime 0 which is displayed by gnuplot as follows.

16

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ex
ec

ut
io

n
tim

e
[s

]

Physical time [s]

OpenFOAM

Figure 12: Dependency of execution time on physical time.

The last major task in our post-processing procedure is to compare free-surface shape
and position throughout all three computational software. This is a task that could be
done in ParaView and will not be explained here any further. Nevertheless, the output
should by similar with following figures.

Figure 13: Pictures of free-surface contour of 2D dam-brak problem. With resp.
without mesh cells on the left resp. right picture.

17

5. Basilisk
This section deals with numerical computation of 2D dam-break problem in software
Basilisk which is free software program for the solution of partial differential equations
on adaptive Cartesian meshes. Complete information about the software can be found
on the home page http://basilisk.fr/. The unique feature of Basilisk is the adaptive
mesh refinement algorithm based on wavelet-estimated discretization error which pro-
vide a generic approach to grid refinement based on estimation and reduction of numer-
ical error [27]. Additional information on mesh refinement can be found in source code
http://basilisk.fr/src/grid/tree-common.h#151. Major drawback of Basilisk soft-
ware is that it supports only Cartesian meshes due to the nature of used AMR technique.
Nevertheless there is a lot of effort made by developers to provide some programming
techniques in order to overcome this (i.e. immersed boundary, fictious domain - Lagrange
multipliers, etc.).

5.1 Governing equations and numerical schemes

The full form of governing equations for two-phase VOF model solved within Basilisk
software is the same as in OpenFOAM. Here we recall the equations 4.1-4.4 again

∇ · u = 0 (5.1)

∂α

∂t
+∇ · (αu) = 0 (5.2)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

[
µ
(
∇u + (∇u)T

)]
− x · g∇ρ− σκ∇α (5.3)

In the Basilisk software, these equations are solved by using second order incremental ap-
proximate projection method on staggered grids, first introduced by Bell, Collela and Glaz
in [28]. The phase interface advection equation 5.2 is solved by conservative VOF method
for Cartesian grids described in [29]. This method efficiently reconstructs phase interface
at any cell using only information of volume fraction function from directly neighbouring
cells. The reconstruction is done by geometrical means, without any expensive iterative-
base algorithms. Advection is then realized in sequential fashion in each direction with
subsequently corrected interfaces. The method is of second order accuracy in space and
time. Only restriction is here posed to Courant number.

∆t

(∣∣∣ u
∆x

∣∣∣+
∣∣∣ v
∆y

∣∣∣+
∣∣∣ w
∆z

∣∣∣) <
1

2

5.2 Setting the case

First of all, software Basilisk is quite easy to download and compile while users’ system is
equipped with all the necessary libraries, see http://basilisk.fr/src/INSTALL. Hence
throughout this work is used common visualization software ParaView, user is encour-
aged to also download scripts for saving the computation results in VTK-format. The
links to the codes are http://basilisk.fr/sandbox/cselcuk/output_vtu_foreach.h

and http://basilisk.fr/sandbox/cselcuk/save_data.h

Once the Basilisk is installed one only needs to prepare C code for particular computa-
tional case. Considering the Basilisk is compiled in $HOME/basilisk/src user can make
his/her own folder here

18

http://basilisk.fr/
http://basilisk.fr/src/grid/tree-common.h#151
http://basilisk.fr/src/INSTALL
http://basilisk.fr/sandbox/cselcuk/output_vtu_foreach.h
http://basilisk.fr/sandbox/cselcuk/save_data.h

1 mkdir $HOME/ b a s i l i s k / s r c /myCases

and here create file damBreak.c described in Appendix, here. Now if the file is prepared,
we can compile and run the code in parallel (using 4 cores)

1 CC99=’mpicc −std=c99 ’ qcc −Wall −O2 −D MPI=4 damBreak . c −o dam −lm
2 mpirun −np 4 . /dam

On our screen should appear window with performance statistics

Figure 14: Performance statistics of Basilisk computation.

which will be also saved into file prefs, helpful for future analysis. According to the
output VTK files, they can be loaded into ParaView as time series. Note that there need
to be loaded *.pvtu files when running the case in parallel.

19

Results
The following section shows results of 2D dam-break problem computational cases solved
with BBAMR, OpenFOAM and Basilisk software. Computation was performed in parallel
mode, using 4 cores of Intel R© Core i5-6300HQ processor.

On Figures 15 and 16 there are graphs comparing execution time with physical time
and number of computational cells with physical time respectively.

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ex
ec

ut
io

n
tim

e
[s

]

Physical time [s]

OpenFOAM

BBAMR

Basilisk

Figure 15: Comparison of execution times of used solvers.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

To
ta

l n
um

be
r o

f c
el

ls
 [-

]

Physical time [s]

OpenFOAM

BBAMR

Basilisk

Figure 16: Comparison of total number of cells of used solvers.

20

In the interval 0 < T [s] < 0.2 one can observe some discrepancies between total number
of cells on Figure 16 which, in the case of BBAMR solver leads to worse performance in
terms of execution time (Figure 15). This phenomenon is caused by less appropriate
setting of initial refinement in BBAMR solver. The initial refinement covers wide area
in the neighborhood of phase interface, which subsequently leads to computation on finer
mesh for a longer time because the criterion for coarsening is not met at the start of
computation but later, approximately in T = 0.16s.

In the case of Basilisk software, there is apparent greater growth of number of compu-
tational cells in 0.5 < T [s] < 0.6 caused by creation and separation of water droplets in
the front part of a moving wave, see also left picture of bottom row in Figure 18.

Figure 17: Pictures of density fields of 2D dam-break problem. From the top to
the bottom, there are displayed BBAMR, OpenFOAM and Basilisk software. Left
column represents time T = 0.24s, right column T = 0.48s.

21

Figure 18: Pictures of density fields of 2D dam-break problem. From the top to
the bottom, there are displayed BBAMR, OpenFOAM and Basilisk software. Left
column represents time T = 0.64s, right column T = 0.80s.

The series of pictures on Figures 17 and 18 show several time snapshots of evolving
density/coloring function for all the computational cases. All of the solvers tend to give the
same qualitative solutions with respect to large scale dynamics, however on the smaller
scale, they differ by the ability to capture the formation of water droplets on the free
surface which are possibly created by instabilities generated by steep gradients of coloring
function and velocity (figures of velocity fields are omitted here). This might be the effect
of different (or absent, in the case of BBAMR) treatment of surface tension together with
the ability of mesh adaptivity to follow the phase interface. Following the rows from top
to bottom on Figure 18 one can observe there is a tendency of water phase to behave like
viscosity is decreasing here.

22

Pictures on Figure 19 show evolution of computational mesh. Here is clearly visible
that in the case of BBAMR solver (upper row) there are more cells situated near the
phase interface (as mentioned above) which could increase computational cost significantly.
However, due to its simplicity in numerical schemes (e.g. explicit time stepping) and
hyperbolic-problems-built solver, BBAMR is still able to slightly outperform other two
numerical solvers.

Figure 19: Pictures of adaptive mesh evolution through time. From the top to the
bottom, there are displayed BBAMR, OpenFOAM and Basilisk software. Left column
represents time T = 0.40s, right column T = 0.80s.

In the case of OpenFOAM (middle row) it appears that the free surface is followed by
refined mesh quite well and only refined area is present in the vicinity of the free surface
which leads to lowest amount of computational cells within the domain. On the other
hand, the Basilisk (bottom row) is able to capture smaller scale dynamics very efficiently

23

and, in the final part of droplets presence (and thus more computational cells), the slope
of computational time cost in Figue 15 seems to be on par with OpenFOAM solver.

Figure 20: Length of water-wetted part of bottom wall dur-
ing the water column collapse. Comparison with experimental
data of Martin and Moyce [11].

Figure 21: Length of water-wetted part of left wall during the
water column collapse. Comparison with experimental data of
Martin and Moyce [11].

The graphs on Figures 20 and 21 compare numerical data with experimental measure-
ments of water-wetted part of bottom and left side of experimental apparatus respectively.
The geometrical configuration of the apparatus is matching with computational domain
in sense of dimensionless parameters. On Figure 20, the numerical data correspond ac-
ceptably with experiment however on Figure 21 one can detect considerable transition of
the two sets of data.

24

Conclusion
In this work comparison of three different numerical software/solvers was done on the 2D
dam-break case. The goal of the work was to study performance of numerical solvers with
different implementation of adaptive mesh refinement techniques. Furthermore, descrip-
tion of settings of these numerical solvers is presented with aim to serve as tutorial for
engineering students.

At first, a brief description of mesh refinement algorithms was done with particular
focus on Quadtree algorithm commonly used in CFD software. Secondly, 2D dam-break
computational case, used throughout the rest of the work, was described.

Afterwards, there follows the main part of the work which is organized as series of com-
putational case descriptions regarding to the three numerical software, namely BBAMR,
OpemFOAM and Basilisk. The case description is consists of governing equations, numer-
ical schemes, settings of the solver and possibly post-processing.

The final part is devoted to comparison of results. There are compared relevant pa-
rameters of computation results such as evolution of number of computational cells, com-
putational cost, qualitative character etc. Finally, confrontation of all the solvers with
experimental results was carried out.

The results of numerical software comparison can be summarized as follows. The
BBAMR software offers efficient and computationally cheap method for solving two phase
flows with advantage of using block-based adaptive mesh refinement algorithm with light
tree-structure. The solver is designed to solve only hyperbolic equations (at least for
two-phase flows) where mesh-adapting criterion, the local numerical entropy production,
naturally corresponds with this type of equations and provide more general option com-
paring to other physically based criteria, e.g. gradients of density, velocity, etc. The
block-based algorithm usually reduce the computational time in contrast with cell-based
one, nevertheless, the setting of initial mesh (blocks) and mesh adaptation criteria can be
very problem-dependent. For example, when the cell refinement is prescribed to follow
phase interface, the refined area can be wider due to the larger initial blocks. The hyper-
bolic solvers also deal with only inviscid flows. But the dynamics of the flow on larger
scales is not affected much by viscosity and is captured well by BBAMR, plus, the viscous
terms can be partly recovered as numerical viscosity of the chosen numerical scheme.

The OpenFOAM two-phase solver, interIsoFoam, equipped with 2D adaptive meshing
algorithm, uses cell-to-cell connectivity data structure. This results in mesh adaptation
more locally based than block-based adaptation, but with additional complexity in data
tree. Considering the adaptation criterion based on phase interface, there are much less
refined cells comparing to the BBAMR (Figure 16), and they are distributed only in the
neighborhood of phase interface. However, the more the cell refinement is focused on the
phase interface the more frequent re-meshing is needed in order to capture evolving free-
surface. Since mesh adaptation in OpenFOAM is more time consuming than BBAMR, the
goal here is find optimal amount of cells around interface. One of the solver’s advantage
is that it deals with viscous flows with the possibility of including surface tension term or
various turbulence models.

The last tested software was Basilisk. There was used numerical solver for two-phase
viscous fluids with option of surface tension. The mesh adaptation, based on quadtree
data structure is here implemented very efficiently enabling to follow phase-interface to
the relatively small flow structures (water droplets). Considering the complexity of flow
of produced solution, the solver tends to outperform OpenFOAM and BBAMR in terms
of computational time. The drawback of the solver is that only simple geometries are
supported up to now and tools for dealing with more complex ones are still being developed.

25

References
[1] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite

keys. Acta Informatica, 4(1):1–9, Mar 1974.

[2] M. Berg, de, O. Cheong, M.J. Kreveld, van, and M.H. Overmars. Computational
geometry : algorithms and applications. Springer, Germany, 3rd ed edition, 2008.

[3] Donald Meagher. Geometric modeling using octree encoding. Computer Graphics
and Image Processing, 19(2):129 – 147, 1982.

[4] Stéphane Popinet. A quadtree-adaptive multigrid solver for the serre–green–naghdi
equations. Journal of Computational Physics, 302:336–358, 2015.

[5] Thomas Altazin, Mehmet Ersoy, Frédéric Golay, Damien Sous, and Lyudmyla
Yushchenko. Numerical investigation of bb-amr scheme using entropy production
as refinement criterion. International Journal of Computational Fluid Dynamics,
30(3):256–271, 2016.

[6] T. Gombosi, Darren Zeeuw, Kenneth Powell, Aaron Ridley, Igor Sokolov, Q. Stout,
and Gábor Tóth. Adaptive Mesh Refinement for Global Magnetohydrodynamic Sim-
ulation, volume 615, pages 247–274. 01 2003.

[7] Jason ZX Zheng. Block-based adaptive mesh refinement finite-volume scheme for
hybrid multi-block meshes. PhD thesis, 2012.

[8] Michael Williamschen. Parallel anisotropic block-based adaptive mesh refinement
algorithm for three-dimensional flows. 2013.

[9] L. Freret, L. Ivan, Hans De Sterck, and Clinton P. T. Groth. High-order finite-volume
method with block-based amr for magnetohydrodynamics flows. Journal of Scientific
Computing, 79:176–208, 2019.

[10] Lucie Freret and Clinton P Groth. Anisotropic non-uniform block-based adaptive
mesh refinement for three-dimensional inviscid and viscous flows. In 22nd AIAA
Computational Fluid Dynamics Conference, page 2613, 2015.

[11] John Christopher Martin, William James Moyce, JC Martin, WJ Moyce,
William George Penney, AT Price, and CK Thornhill. Part iv. an experimental
study of the collapse of liquid columns on a rigid horizontal plane. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 244(882):312–324, 1952.

[12] Frédéric Golay and Philippe Helluy. Numerical schemes for low mach wave breaking.
International Journal of Computational Fluid Dynamics, 21(2):69–86, 2007.

[13] Mehmet Ersoy, Frédéric Golay, and Lyudmyla Yushchenko. Adaptive multiscale
scheme based on numerical density of entropy production for conservation laws. Open
Mathematics, 11(8):1392–1415, 2013.

[14] F Moukalled, L Mangani, M Darwish, et al. The finite volume method in
computational fluid dynamics. An advanced introduction with OpenFoam R© and
Matlab R©. Nueva York: Springer. Recuperado de http://www. gidropraktikum. narod.
ru/Moukalled-et-al-FVM-OpenFOAM-Matlab. pdf, 2016.

26

[15] S Márquez Damián. An extended mixture model for the simultaneous treatment
of short and long scale interfaces. Doktorarbeit. Universidad Nacional Del Litoral.
Facultad de Ingenieria y Ciencias Hidricas, 2013.

[16] S Márquez Damián. Description and utilization of interfoam multiphase solver.

[17] Johan Roenby, Henrik Bredmose, and Hrvoje Jasak. A computational method for
sharp interface advection. Royal Society open science, 3(11):160405, 2016.

[18] E. Olsson. A description of isoadvector - a numerical method for improved surface
sharpness in two-phase flows. In Proceedings of CFD with OpenSource Software,
Edited by Nilsson. H., 2017.

[19] OpenCFD Ltd (ESI Group). Openfoam - documentation. 26.6. 2019. https://www.
openfoam.com/documentation/.

[20] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Comput. Phys.,
12(6):620–631, November 1998.

[21] Chris Greenshields. Openfoam v6 user guide: 5.3 mesh generation - blockmesh. 26.6.
2019. https://cfd.direct/openfoam/user-guide/v6-blockmesh/.

[22] OpenFOAMWiki. Blockmesh. 26.6. 2019. https://openfoamwiki.net/index.php/
BlockMesh.

[23] Luca Cornolti. Adaptive mesh refinement in openfoam-v1812 for 2-dimensional prob-
lems. 26.6. 2019. https://github.com/krajit/dynamicRefine2DFvMesh.

[24] Jonas Karlsson. Implementing anisotropic adaptive mesh refinement in open-
foam. Master’s thesis, Chalmers University of Technology, University of Gothen-
burg, 2012. http://publications.lib.chalmers.se/records/fulltext/174173/

174173.pdf.

[25] OpenFOAMWiki. Parameter definitions - dynamicrefinefvmesh - openfoamwiki.
26.6. 2019. https://openfoamwiki.net/index.php/Parameter_Definitions_-_

dynamicRefineFvMesh.

[26] OpenCFD Ltd (ESI Group). Openfoam: Api guide: Openfoam : Open source cfd.
26.6. 2019. https://www.openfoam.com/documentation/guides/latest/api/.

[27] J. Antoon van Hooft, Stéphane Popinet, Chiel C. van Heerwaarden, Steven J. A.
van der Linden, Stephan R. de Roode, and Bas J. H. van de Wiel. Towards adap-
tive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorology,
167(3):421–443, Jun 2018.

[28] John Bell, Phillip Colella, and Harland Glaz. A second-order projection method for
the navier–stokes equations. Journal of Computational Physics, 85:257–283, 12 1989.

[29] Gabriel Weymouth and Dick K.-P. Yue. Conservative volume-of-fluid method for
free-surface simulations on cartesian-grids. J. Comput. Physics, 229:2853–2865, 04
2010.

27

https://www.openfoam.com/documentation/
https://www.openfoam.com/documentation/
https://cfd.direct/openfoam/user-guide/v6-blockmesh/
https://openfoamwiki.net/index.php/BlockMesh
https://openfoamwiki.net/index.php/BlockMesh
https://github.com/krajit/dynamicRefine2DFvMesh
http://publications.lib.chalmers.se/records/fulltext/174173/174173.pdf
http://publications.lib.chalmers.se/records/fulltext/174173/174173.pdf
https://openfoamwiki.net/index.php/Parameter_Definitions_-_dynamicRefineFvMesh
https://openfoamwiki.net/index.php/Parameter_Definitions_-_dynamicRefineFvMesh
https://www.openfoam.com/documentation/guides/latest/api/

Appendix
There are listed source files which contain input parameters set in each particular simula-
tion performed by the software.

BBAMR

Input file located in $HOME/BBAMR/exec/damBreak.inp. Description of some parameters
is given in section 3.3.

1 !−−−
2 ! Data f i l e in EOLENS format
3 ! Each block o f data i s c h a r a c t e r i z e d in the f i r s t l i n e by a header (4 c h a r a c t e r s)
4 ! then a code (1 i n t e g e r) and an argument (1 i n t e g e r)
5 ! format A4, 2 I5
6 ! PHYS MESH INIT COND NUME
7 !−−−
8

9 !−−−
10 ! Reading p h y s i c a l parameters
11 ! Header PHYS
12 ! 1 keyword (4 c h a r a c t e r s) and a r e a l
13 ! f o r now we have the same va lues f o r a l l domains
14 !−−−
15 ! MODE : p h y s i c a l model
16 ! 0/ Euler
17 ! 1/ Navier−Stokes
18 ! 2/ K−e p s i l o n
19 ! 3/ i so the rma l two−phases
20 ! 4/ two−phases 1 energy
21 ! 5/ two−phases 2 e n e r g i e s
22 ! 6/ granu lar
23 ! 10/ Shal low water (d e f a u l t 0 .)
24 ! GPES : Gravity (d e f a u l t 9 . 81)
25 ! GAMA : Parameter gama o f the p r e s su r e law (d e f a u l t 1 . 1)
26 ! PINF : Parameter Pinf o f the p r e s su r e law (d e f a u l t −0.9996363636D5)
27 ! VIMU : Dynamical v i s c o s i t y mu (Pa s) (d e f a u l t −0.890d−3)
28 ! ZETA : Volumic v i s c o s i t y zeta (Pa s) (d e f a u l t 0 .)
29 ! CSVC : S p e c i f i c heat at constant volume (J/kg/K) (d e f a u l t 4180 .)
30 ! TREF : Temperature o f r e f e r e n c e (d e f a u l t 299.9999130 d0)
31 ! CONT : Thermal conduc t i v i ty (W/m K) (d e f a u l t 0 .6071)
32 ! CONV : Computation o f convec t ive terms 0/no 1/ yes (d e f a u l t 1 .)
33 ! PREF : i so the rma l p r e s su r e o f r e f e r e n c e (d e f a u l t 1 . d5)
34 ! CSOA : Air sound v e l o c i t y (i s o the rma l) (d e f a u l t 2 0 .)
35 ! CSOW : Water sound v e l o c i t y (i s o the rma l) (d e f a u l t 2 0 .)
36 ! REFA : I sothermal dens i ty r e f e r e n c e f o r Air (d e f a u l t 1 .)
37 ! REFW : Isothermal dens i ty r e f e r e n c e f o r Water (d e f a u l t 1000 .)
38 ! PIFA : Parameter p i n f f o r a i r (d e f a u l t 0 .)
39 ! PIFW : Parameter p i n f f o r water (d e f a u l t 0 .)
40 ! GMAA : Parameter gamma f o r a i r (d e f a u l t 1 . 4)
41 ! GMAW : Parameter gamma f o r water (d e f a u l t 1 . 1)
42 ! CONS : non−c on s e rva t i v e computation 0/ cons 1/non−cons (d e f a u l t 0)
43 ! SHAR : i so the rma l i n t e r f a c e sharpening parameter
44 ! recommended value 0 .1 (de faut 0)
45 !−−−
46 PHYS 0
47 MODE 3 .
48 CONS 1
49 SHAR 0.1
50

51 !−−−
52 ! Reading the mesh
53 ! Header MESH
54 ! code 1 −> c r e a t i o n o f a mesh
55 ! argument : 0 type ”1D shock tube ”
56 ! next l i n e : xmin , xmax , ymin , ymax , zmin , zmax
57 ! next l i n e : nb dom , nx
58 !
59 ! argument : 1 type ”2d box”
60 ! next l i n e : xmin , xmax , ymin , ymax , zmin , zmax

28

61 ! next l i n e : nb dom , nx , ny , i a x i
62 !
63 ! argument : 2 type ”3d box”
64 ! next l i n e : xmin , xmax , ymin , ymax , zmin , zmax
65 ! next l i n e : nx , ny , nz
66 !
67 ! code 2 −> Reading an a s c i i f i l e format Fluent 6
68 ! argument : Dimension o f the problem
69 ! 0/ axi , 1/1D, 2/2D, 3/3D
70 ! next l i n e : f i l e name
71 !−−−
72 MESH 1 1
73 0 . 4 . 0 . 3 . −0.001 0 .001
74 1 64 48 0
75 !−−−
76 ! Lecture des c o n d i t i o n s i n i t i a l e s (S i icode MESH>0)
77 ! Entete INIT
78 ! code 0 −> D e f i n i t i o n pour un tube a chocs
79 ! v a r i a b l e s p r i m i t i v e s a gauche rho , u , p s i x<0 (3 r e e l s)
80 ! v a r i a b l e s p r i m i t i v e s a d r o i t e rho , u , p s i x>0 (3 r e e l s)
81 ! argument : 0
82 ! code 1 −> D e f i n i t i o n constante par domaine
83 ! argument : nombre de domaines
84 ! pour chaque domaine , on e c r i t sur une l i g n e
85 ! nvar v a l eu r s (v a r i a b l e s p r i m i t i v e s)
86 ! code 2 −> Lecture sur un f i c h i e r , nvar v a l eu r s par c e l l u l e
87 ! argument : 0
88 ! code 3 −> D e f i n i t i o n par une f o n c t i o n u t i l i s a t e u r
89 ! (r ou t in e . . / u t i / f c t u t i . f 90)
90 ! argument : Numero de l a f o n c t i o n
91 ! code 4 −> D e f i n i t i o n pour l e BB−AMR
92 ! argument : Numero de l a f o n c t i o n u t i l i s a t e u r (s i <0)
93 ! (subrout ine . . / u t i / amr in i . f 90)
94 ! ou nombre de zones s i argument >0
95 ! puis , s i argument >0, pour chaque zone
96 ! xmin , xmax , ymin , ymax , zmin , zmax
97 ! nvar v a l eu r s (v a r i a b l e s p r i m i t i v e s)
98 !−−−
99 INIT 4 2

100 −1. 4 . 1 −1. 3 . 1 −1. 1 .
101 1 . 0 . 0 . 0 . 1 . e5 0 .
102 −1. 1 . −1. 2 . −1. 1 .
103 1000 . 0 . 0 . 0 . 1 . e5 0 .
104

105 !−−−
106 ! Reading boundary cond i t i on (i f icode MESH>0)
107 ! (maximum 10 f o r the moment)
108 ! Header COND
109 !
110 ! code 0 −> Desc r ip t i on in the case ” shock tube ” : Nothing
111 !
112 ! code 1 −> Desc r ip t i on in the case ”2d box” (at l e a s t 1 l i n e per type) :
113 ! kind o f boundary cond i t i on in xmin , xmax , ymin , ymax
114 !
115 ! code 2 −> Desc r ip t i on in the case ”3d box” (at l e a s t 1 l i n e per type) :
116 ! kind o f boundary cond i t i on in xmin , xmax , ymin , ymax , zmin , zmax
117 !
118 ! code 3 −> D e f i n i t i o n per zone f o r Fluent mesh
119 ! argument : number o f zones d e f i n i n g a boundary cond i t i on
120 ! number o f zone , kind o f boundary cond i t i on
121 !
122 ! kind o f boundary cond i t i on :
123 ! 0 o u t l e t (we copy)
124 ! 1 miror
125 ! 2 wa l l (in the case o f v i cous model)
126 ! 3 D i r i c h l e t cond i t i on (i f 1 . e20 then copy) , then next l i n e nvar va lue s
127 ! 4 user ’ s f unc t i on , then next l i n e func t i on number
128 ! 5 wa l l law (f o r turbu l ent f low)
129 ! 6 P e r i o d i c i t y (the second time , 3 r e a l va lue s d e f i n i n g the t r a n s l a t i o n vec to r are

added)
130 ! 7 D i r i c h l e t cond i t i on on co n s e r va t i v e v a r i a b l e s (i f 1 . e20 then copy) ,
131 ! then next l i n e nvar va lue s
132 ! 999 Non used

29

133 !−−−
134 COND 1 0
135 1
136 1
137 1
138 1
139 !−−−
140 ! Reading mesh parameters per Block AMR (BB−AMR)
141 ! in the case o f BB−AMR, the block mesh i s r ep r e s en ted by th domain << 0 >>.
142 ! Header BLOC
143 !
144 ! code 0 −> d e f a u l t va lue
145 !
146 ! 1 keyword (4 c h a r a c t e r s) and a r e a l
147 ! NBDS : number o f domains (d e f a u l t 0 01 .)
148 ! NRMA : Maximum re f inement l e v e l (d e f a u l t 0 00 .)
149 ! VCDE : Mesh coar s en ing parameter 0<..<1 (d e f a u l t 0 . 002)
150 ! VCRA : Mesh re f inement parameter 0<..<1 (d e f a u l t 0 . 0 2)
151 ! TFIN : Fina l time o f s imu la t i on
152 ! CCBL : CFL Condit ion on b locks be f o r e remeshing
153 ! FDRA : Function d e f i n i n g the mesh re f inement to be app l i ed
154 ! NZRA : Number o f zones where i n i t i a l b locks are r e f i n e d (d e f a u l t 1 .)
155 ! then f o r each zone
156 ! nrb , nx , ny , nz , xmin , xmax , ymin , ymax , zmin , zmax
157 !−−−
158 BLOC 0
159 NBDS 4
160 NRMA #NRMA#
161 VCDE #VCDE#
162 VCRA #VCRA#
163 TFIN #TFIN#
164 CCBL . 8
165 NZRA 3
166 0 1 1 1 −1. 4 .10 −1. 3 .10 −1. 1 .
167 #NRMA init# 1 1 1 −1. 1 .21 −1. 2 .21 −1. 1 .
168 0 1 1 1 −1. . 79 −1. 1 .79 −1. 1 .
169 !−−−
170 ! Reading numerica l parameter
171 ! Header NUME
172 ! 1 keyword (4 c h a r a c t e r s) then a r e a l
173 ! code 0 −> d e f a u l t va lue
174 !
175 ! TMIN : lower bound o f computation time (d e f a u l t 0 .)
176 ! TMAX : upper bound o f computation time (d e f a u l t 0 .)
177 ! CCFL : c f l c ond i t i on (d e f a u l t 0 . 9)
178 ! NPAS : time step number (d e f a u l t 0 .)
179 ! FLUX : kind o f numerica l f l u x
180 ! 0/ rusanov
181 ! 1/godunov
182 ! 2/ Flux cente red
183 ! 3/ VF−Roe (d e f a u l t 1 .)
184 ! PRET : ordre o f time d i s c r e t i z a t i o n 1 ou 2 (de faut 1 .)
185 ! PREE : ordre o f space d i s c r e t i z a t i o n 1 ou 2 (de faut 1 .)
186 ! LIMI : kind o f l i m i t e r 0/Barth , 1/ Cartes ian (d e f a u l t 0 .)
187 ! PART : Number o f domains to be c rea ted (without AMR! !) (d e f a u l t 0 .)
188 ! SAVE : kind o f backup , three−d i g i t number (d e f a u l t 0 0 1 .)
189 ! hundred : shock tube backup 0/no 1/ yes
190 ! decade : MEDIT backup 0/no 1/ yes
191 ! un i t : b inary backup 0/no 1/ yes
192 ! SOND : number o f probe < 10 (de faut 0 00 .)
193 ! then coo rd ina t e s x , y , z o f the probe (1 probe per l i n e)
194 ! METH : time i n t e g r a t i o n method
195 ! 1/ RK1 ou RK
196 ! 2/ Adams Bashforth
197 ! 3/ Adams Bashforth pas de temps l o c a l (d e f a u l t 00 1 .)
198 !−−−
199 NUME 0
200 TMAX 0.1
201 TMIN 0 .
202 TMAX 0.1
203 CCFL . 5
204 PREE 2 .
205 PRET 2 .

30

206 LIMI 0 .
207 METH 2
208 SAVE 001 .

OpenFOAM

The location of OpenFOAM input files is hereafter referred to the case’s main directory,
$HOME/OpenFOAM/my dam/damBreak/, meaning that e.g system/blockMesh file has follow-
ing full path $HOME/OpenFOAM/my dam/damBreak/system/blockMesh.

• system/blockMeshDict

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 ob j e c t blockMeshDict ;
14 }
15 // ∗ //
16

17 s c a l e 1 ;
18

19 v e r t i c e s
20 (
21 (0 0 0)
22 (4 0 0)
23 (4 3 0)
24 (0 3 0)
25 (0 0 1)
26 (4 0 1)
27 (4 3 1)
28 (0 3 1)
29

30) ;
31

32 b locks
33 (
34 hex (0 1 2 3 4 5 6 7) (64 48 1) simpleGrading (1 1 1)
35) ;
36

37 edges
38 (
39) ;
40

41 boundary
42 (
43 atmosphere
44 {
45 type wa l l ;
46 f a c e s
47 (
48 (3 7 6 2)
49) ;
50 }
51 l e f t W a l l
52 {
53 type wa l l ;
54 f a c e s
55 (
56 (0 4 7 3)

31

57) ;
58 }
59 r ightWal l
60 {
61 type wa l l ;
62 f a c e s
63 (
64 (2 6 5 1)
65) ;
66 }
67 lowerWall
68 {
69 type wa l l ;
70 f a c e s
71 (
72 (1 5 4 0)
73) ;
74 }
75 frontAndBack
76 {
77 type empty ;
78 f a c e s
79 (
80 (0 3 2 1)
81 (4 5 6 7)
82) ;
83 }
84) ;
85

86 mergePatchPairs
87 (
88) ;
89

90 // ∗∗∗ //

Some of the blockMeshDictparameters are described here.

scale ascribes physical size in meters to distance defined by vertices
vertices Cartesian coordinates of vertices (implicitly labeled from zero)
blocks definition of blocks each consisting of 8 vertices, followed by number of cells

in x,y,z directions and simpleGrading tells here to divide cells equidistantly
in each direction

edges don’t need to be defined here (allows curved edges, etc.)
boundary user named boundary patches with definition of type (no boundary condi-

tions yet) and list of faces consisted of labels of vertices. Here type empty

means that computation will be done in 2D sense (although mesh is 3D
every time)

32

• system/controlDict

Note: In this file there need to be included line adding our newly compiled library -
libdynamicRefine2D.so

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system” ;
14 ob j e c t c o n t r o l D i c t ;
15 }
16 // ∗ //
17

18 l i b s (” l ibdynamicRefine2D . so ”) ;
19

20 a p p l i c a t i o n interIsoFoam ;
21

22 startFrom lates tTime ;
23

24 startTime 0 ;
25

26 stopAt endTime ;
27

28 endTime 1 . 0 ;
29

30 deltaT 0 . 0 0 0 1 ;
31

32 wr i teContro l adjustableRunTime ;
33

34 w r i t e I n t e r v a l 0 . 0 2 ;
35

36 purgeWrite 0 ;
37

38 writeFormat a s c i i ;
39

40 w r i t e P r e c i s i o n 7 ;
41

42 writeCompress ion o f f ;
43

44 timeFormat gene ra l ;
45

46 t imePrec i s i on 6 ;
47

48 runTimeModif iable yes ;
49

50 adjustTimeStep yes ;
51

52 maxCo 0 . 8 ;
53 maxAlphaCo 0 . 8 ;
54 maxDeltaT 0 . 1 ;
55

56

57 // ∗∗∗ //

33

• system/fvSchemes

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system” ;
14 ob j e c t fvSchemes ;
15 }
16 // ∗ //
17

18 ddtSchemes
19 {
20 d e f a u l t CrankNicolson 0 . 9 ;
21 }
22

23 gradSchemes
24 {
25 d e f a u l t Gauss l i n e a r ;
26 }
27

28 divSchemes
29 {
30 div (rhoPhi ,U) Gauss upwind ;
31 div (phi , alpha) Gauss vanLeer ;
32 div (phirb , alpha) Gauss l i n e a r ;
33 div (phi , k) Gauss upwind ;
34 div (phi , omega) Gauss upwind ;
35 div (((rho∗nuEff) ∗dev2 (T(grad (U))))) Gauss l i n e a r ;
36 }
37

38 l ap lac ianSchemes
39 {
40 d e f a u l t Gauss l i n e a r c o r r e c t e d ;
41 }
42

43 i n t e rpo la t i onSchemes
44 {
45 d e f a u l t l i n e a r ;
46 }
47

48 snGradSchemes
49 {
50 d e f a u l t c o r r e c t e d ;
51 }
52

53 wa l lD i s t
54 {
55 method meshWave ;
56 }
57

58

59 // ∗∗∗ //

34

• system/fvSolution

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system” ;
14 ob j e c t f v S o l u t i o n ;
15 }
16 // ∗ //
17

18 s o l v e r s
19 {
20 ” alpha . water .∗ ”
21 {
22 i soFaceTol 1e−10;
23 s u r f C e l l T o l 1e−6;
24 nAlphaBounds 3 ;
25 snapTol 1e−12;
26 c l i p t rue ;
27 w r i t e S u r f C e l l s f a l s e ;
28 writeBoundedCel l s f a l s e ;
29 wr i t e I s oFace s f a l s e ;
30

31 nAlphaCorr 1 ;
32 nAlphaSubCycles 2 ;
33 cAlpha 1 ;
34 }
35

36 p rgh
37 {
38 s o l v e r GAMG;
39 t o l e r a n c e 1e−08;
40 r e l T o l 0 . 0 1 ;
41 smoother DIC ;
42 cacheAgglomeration no ;
43 }
44

45 p rghFina l
46 {
47 $p rgh ;
48 r e l T o l 0 ;
49 t o l e r a n c e 1e−9;
50 }
51

52 ” pcorr .∗ ”
53 {
54 $p rghFina l ;
55 t o l e r a n c e 1e−08;
56 }
57

58 U
59 {
60 s o l v e r smoothSolver ;
61 smoother GaussSe ide l ;
62 t o l e r a n c e 1e−07;
63 r e l T o l 0 ;
64 nSweeps 1 ;
65 }
66

67 }
68

69 PIMPLE
70 {

35

71 momentumPredictor no ;
72 nCorrector s 3 ;
73 nNonOrthogonalCorrectors 0 ;
74 co r r e c tPh i yes ;
75

76 pRefPoint (0 . 0 1 2 .98 0 . 001) ;
77 pRefValue 0 ;
78 }
79

80

81 // ∗∗∗ //

• system/decomposeParDict

Note: Here we set parameters for parallel computation. Parameter coeffs here define
splitting our computational domain according prescribed number of divisions. Method
simple defines the division of domain will be done in equidistant fashion. The computation
can be also still started on single core, without using this dictionary file.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system” ;
14 ob j e c t decomposeParDict ;
15 }
16 // ∗ //
17

18 numberOfSubdomains 4 ;
19

20 method s imple ;
21

22 c o e f f s
23 {
24 n (2 2 1) ;
25 }
26

27 // ∗∗∗ //

36

• system/setFieldsDict

Note: In this file is set the initial field of coloring function - alpha.water as left-corner-
situated 1m× 2m block.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v1812 |
5 | \\ / A nd | Web: www.OpenFOAM. com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i o n 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system” ;
14 ob j e c t s e t F i e l d s D i c t ;
15 }
16 // ∗ //
17

18 d e f a u l t F i e l d V a l u e s
19 (
20 vo lSca l a rF i e ldVa lue alpha . water 0
21) ;
22

23 r e g i o n s
24 (
25 boxToCell
26 {
27 box (−100 −100 −100) (1 . 0 2 .0 100) ;
28 f i e l d V a l u e s
29 (
30 vo lSca l a rF i e ldVa lue alpha . water 1
31) ;
32 }
33) ;
34

35

36 // ∗∗∗ //

37

Basilisk

Basilisk’s input file.

• $HOME/basilisk/src/myCases/damBreak.c

1 #inc lude ”common . h”
2 // 2D Cartes ian g r id
3 #inc lude ” g r id / quadtree . h”
4 // embeded boundaries , in order to work
5 // with non−square geometry o f computat ional g r i d
6 #inc lude ”embed . h”
7 // Navier−Stokes , VOF formulat ion
8 #inc lude ” navier−s t oke s / cente red . h”
9 #inc lude ”two−phase . h”

10 #inc lude ” navier−s t oke s / conse rv ing . h”
11 // s u r f a c e t en s i on
12 #inc lude ” t en s i on . h”
13 // s t a t i s t i c s o f computation performance
14 #inc lude ” navier−s t oke s / p e r f s . h”
15 // compute with t o t a l pres sure , p <−− p−rgh
16 #inc lude ” reduced . h”
17 // save data to VTK, f o r ParaView
18 #inc lude ” save data . h”
19 #inc lude ” u t i l s . h”
20

21 // maximal l e v e l o f r e f inement
22 #d e f i n e MAXLEVEL 10
23 // minimal l e v e l o f r e f inement
24 #d e f i n e MINLEVEL 6
25

26 double endTime = 1 . 0 ;
27

28 i n t main () {
29

30 L0 = 4 . ; // o r i g i n a l domain l ength
31 // (now s t i l l square domain , i . e . 4x4 m)
32 o r i g i n (0 . , 0 .) ;
33 N = 64 ; // number o f i n i t i a l c e l l s in x and y
34 // d i r e c t i o n
35

36 rho1 = 1 0 0 0 . ; // water dens i ty
37 rho2 = 1 . 0 ; // a i r dens i ty
38 mu1 = 1 . / 1 0 0 0 . ; // water v i s c o s i t y
39 mu2 = 1 . 8 1 / 1 0 0 0 0 0 . ; // a i r v i s c o s i t y
40

41 u . n [bottom] = d i r i c h l e t (0 .) ; // f u l l −s l i p boundary cond i t i on
42 u . t [bottom] = neumann (0 .) ; // f u l l −s l i p boundary cond i t i on
43 u . n [embed] = neumann (0 .) ; // t h i s r e p l a c e s top boundary −−>
44 u . t [embed] = neumann (0 .) ; // −−> homogeneous Neumann
45

46 run () ;
47 }
48

49 event i n i t (t = 0)
50 {
51 // here i s de f i ned i n i t i a l r e f inement o f
52 // i n i t i a l f r e e s u r f a c e
53 double Dref = 0 . 0 5 ;
54 r e f i n e (((x > 1−Dref /2 . && x < 1+Dref /2 . && y < 2+Dref / 2 .) \
55 | | (y > 2−Dref /2 . && y < 2+Dref /2 . && x < 1+Dref / 2 .)) && l e v e l<MAXLEVEL) ;
56

57 // g r a v i t a t i o n a l a c c e l e r a t i o n
58 const f a c e vec to r g [] = {0 ,−9.81} ;
59 // a l l vo lumetr i c f o r c e s are denoted as −a− by d e f a u l t
60 a = g ;
61 // alpha i s equal to 1/ rho
62 alpha = alphav ;
63

64 // new f i e l d phi , needed only f o r masking−out
65 // upper part o f computat ional domain ,
66 // now i t i s supposed to be r e c t angu l a r domain , 4x3m

38

67 ver tex s c a l a r phi [] ;
68 f o r e a c h v e r t e x ()
69 {
70 phi [] = i n t e r s e c t i o n (3 . 0 − y , HUGE) ;
71 }
72 boundary ({ phi }) ;
73 f r a c t i o n s (phi , cs , f s) ;
74

75 // s e t t i n g i n i t i a l cond i t i on f o r c o l o r i n g (phase f r a c t i o n) func t i on
76 f o r e a c h v e r t e x ()
77 {
78 phi [] = min (2 . 0 − y , 1 . 0 − x) ;
79 }
80 f r a c t i o n s (phi , f) ;
81

82 // i n i t i a l c ond i t i on f o r v e l o c i t y (t iny movement o f water column to r i g h t)
83 f o r each ()
84 {
85 u . x [] = f [] ∗ (1 e−8) ;
86 u . y [] = 0 ;
87 }
88

89 }
90 //−−//
91 // p r i n t some computation s t a t i s t i c s i n to s epara t e window
92 void mg print (mgstats mg)
93 {
94 i f (mg. i > 0 && mg. r e sa > 0 .)
95 f p r i n t f (s tde r r , ”# %d %g %g %g\n” , mg. i , mg. resb , mg. resa ,
96 exp (l og (mg. re sb /mg. r e sa) /mg. i)) ;
97 }
98

99

100 //−−//
101 // p r i n t some log in te rmina l
102 event l o g f i l e 2 (i +=50)
103 {
104 i f (i == 0)
105 f p r i n t f (f e r r , ” t dt mgp . i mgpf . i mgu . i gr id−>tn p e r f . t p e r f . speed \n”) ;
106 f p r i n t f (f e r r , ”%g %g %d %d %d %ld %g %g\n” , t , dt , mgp . i , mgpf . i , mgu . i , gr id−>

tn , p e r f . t , p e r f . speed) ;
107 // f p r i n t f (f e r r , ”# r e f i n e d %d c e l l s , coarsened %d c e l l s \n” , s . nf , s . nc) ;
108 }
109

110 //−−//
111 // p r i n t s p e c i f i e d f i e l d s in to VTK f i l e s
112 event data out (t += 0 . 0 2 ; t <= endTime)
113 {
114 char name [8 0] = ”damBreak data/ data ” ;
115 s c a l a r ∗ l i s t = {p , rho } ;
116 vec to r ∗ v l i s t = {u } ;
117 save data (l i s t , v l i s t , i , t , name) ;
118 }
119

120 //−−//
121 // adapt ive mesh re f inement
122 event adapt (i++){
123 s c a l a r g [] ;
124 f o r each ()
125 {
126 // d e f i n e f i e l d to be r e f i n e d
127 // only in the neighbourhood o f f r e e s u r f a c e
128 i f (f [] > 0 .05 && f [] < 0 . 9 5) { g [] = 1 .0 + no i s e () ; }
129 e l s e {g [] = 0 . ; }
130 }
131 // update boundary c o n d i t i o n s
132 boundary ({ g }) ;
133 // d e f i n e wavelet t rans fo rmat ion c r i t e r i a (lower and upper e r r o r t r e s h o l d s)
134 adapt wave let ({ g } , (double []) {0 . 001 , 0 . 01} , m in l eve l = MINLEVEL, maxlevel =

MAXLEVEL) ;
135 }

39

	Adaptive mesh refinement
	Quadtree/Octree family of algorithms

	Computational case
	BBAMR
	Governing equations
	Numerical schemes
	Setting the case
	Post-processing the numerical results

	OpenFOAM
	Governing equations
	Numerical schemes
	Setting the case
	Post-processing the numerical results

	Basilisk
	Governing equations and numerical schemes
	Setting the case

	References

