clear all close all priklad = 114; % matice soustavy switch (priklad) case 111 A=[0 1;6 -1]; % sedlo case 121 A=[0 1;-2 3]; % uzel bikriticky case 112 A=[-2 2; -2 -2]; % ohnisko case 114 A=[1 -5;2 -1]; % stred case 115 A=[1 -1;1 3]; % uzel monokriticky otherwise disp('takovy priklad neni pripraven'); return end %% vypocet smeroveho pole T %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % volba hustoty site h = 0.2; % volba rozsahu site xh =-3 : h : 3 ; yh =-3 : h : 3 ; % souradnice vsech bodu site [xx,yy] = meshgrid(xh,yh); % zmena formatu pro nasobeni matici: % XX ma dva radky, % XX(:,k) jsou souradnice k-teho bodu site XX = [xx(:), yy(:)]'; % vypocet smeroveho pole T = A*XX; %% nakreseni pole T %% %%%%%%%%%%%%%%%%%%%%%% % zmena formatu pro funkci quiver tx = reshape(T(1,:),size(xx)); ty = reshape(T(2,:),size(yy)); % normovani vektoru (tx, ty) p = sqrt(tx.*tx + ty.*ty); z = find(p<0.0001); % aby se nedelilo 0 v BR p(z) = 1; ttx = 0.8*tx./p; % 0.8 je empiricka konst., vypada to nejlip tty = 0.8*ty./p; % v kazdem bode site xh,yh se nakresli vektor [ttx, tty] quiver(xh, yh, ttx, tty); hold on %% nakreseni vybraneho reseni %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h=0.05; % krok pro kresleni krivky switch (priklad) case 111 % vl. vektory plot([-1.5 1.5], [-3 3],'k','linewidth',2); % ,'linewidth',2 plot([-1 1], [3 -3],'k','linewidth',2); % reseni C.u. t = 0 : h : 1.35; X = -0.1*exp(2*t).*[1;2] +0.9*exp(-3*t).*[1;-3]; Xi=X; case 121 % vl. vektory plot([-1.5 1.5], [-3 3],'k','linewidth',2); % ,'linewidth',2 plot([-3 3], [-3 3],'k','linewidth',2); % reseni C.u. - pro trajektorii t = -0.1 : h : 2; X = 1*exp(t).*[1;1] - 0.1*exp(2*t).*[1;2]; % reseni C.u. - pro integ. krivku t=-3:h:2; Xi = 1*exp(t).*[1;1] - 0.1*exp(2*t).*[1;2]; case 112 t = 0 : h : 6; X = exp(-2*t).*[2*cos(2*t)-3*sin(2*t); -3*cos(2*t)-2*sin(2*t)]; Xi=X; case 114 t = 0 : h : 6*pi/3; X = [-cos(3*t)-2*sin(3*t); cos(3*t)-sin(3*t)]; Xi=X; Xi1= [2*cos(3*t)-sin(3*t); cos(3*t)+sin(3*t)]; % ezplot('2*x^2-2*x*y+5*y^2-9',[-3, 3]) % kontrola case 115 % vl. vektor plot([-3 3], [3 -3],'k','linewidth',2); % ,'linewidth',2 t = -1.2 : h : 0.3; X = exp(2*t).*[3*t-2; -3*t-1]; Xi=X; otherwise disp('takovy priklad neni pripraven'); end plot(X(1,:),X(2,:),'r','linewidth',2) % trajktorie reseni plot(X(1,1),X(2,1),'r*','linewidth',4) % poc. podm. axis tight axis equal figure plot3(t,Xi(1,:),Xi(2,:),'r','linewidth',2) % integ. krivka axis equal xlabel('t', "fontsize", 16,'fontweight','bold'); ylabel('x', "fontsize", 16,'fontweight','bold'); zlabel('y', "fontsize", 16,'fontweight','bold'); grid on if priklad==114 hold on plot3(t,Xi1(1,:),Xi1(2,:),'k','linewidth',2) % dalsi integ. krivka h=legend('X(\pi/2)=[2;1]','X(0)=[2;1]'); set (h, "fontsize", 16); hold off end