Partial differential equations - classification

Second order linear PDE in 2 variables

We want to find a function $u \equiv u(x, y)$, which satisfies the equation

$$
\begin{equation*}
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}+d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+h u=f \tag{1}
\end{equation*}
$$

in a given domain Ω, where $a \equiv a(x, y), b \equiv b(x, y), \ldots h \equiv h(x, y)$ and $f \equiv f(x, y)$ are functions continuous on Ω. Moreover, we demand that $u(x, y)$ fulfills some given conditions on the boundary Γ of the domain Ω.

Classification of the 2-nd order linear PDE in 2 variables
These equations are classified in a similar manner as the conic sections given by the algebraic equation $a x^{2}+b x y+c y^{2}+d x+e y+h=0$. There are three types of equations distingushed by the sign of the discriminant $r(x, y)=(b(x, y))^{2}-4 a(x, y) c(x, y)$:

- elliptic $\ldots r(x, y)<0 \quad$ (example: Poisson equation)
- parabolic $\ldots r(x, y)=0 \quad$ (example: heat equation)
- hyperbolic $\ldots r(x, y)>0$ (example: wave equation)

The mathematical nature of solutions of the equation (1) depends on its type and numerical method for solving the equation should be chosen accordingly.

Example 1

Determine the type of the equation

$$
x^{2} y^{2} \frac{\partial^{2} u}{\partial x^{2}}-x y \frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{4} \frac{\partial^{2} u}{\partial y^{2}}=x+2 y
$$

Solution

We are interested in the sign of the discriminant $r(x, y)$:
$r(x, y)=(b(x, y))^{2}-4 a(x, y) c(x, y)=(-x y)^{2}-4 x^{2} y^{2} \cdot \frac{1}{4}=0$.
Function $r(x, y)$ is equal to zero for all x, y, so the given equation is classified as parabolic (in any domain).

Example 2

Determine the type of the equation

$$
x \frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{y} \frac{\partial^{2} u}{\partial y^{2}}=x y
$$

Solution

$$
\begin{aligned}
& r(x, y)=(b(x, y))^{2}-4 a(x, y) c(x, y)=0+4 \frac{x}{y} \\
& r(x, y)>0 \text { in } \Omega_{1}=(0, \infty) \times(0, \infty) \text { and } \Omega_{2}=(-\infty, 0) \times(-\infty, 0), \\
& r(x, y)<0 \text { in } \Omega_{3}=(-\infty, 0) \times(0, \infty) \text { and } \Omega_{4}=(0, \infty) \times(-\infty, 0) .
\end{aligned}
$$

The given equation is hyperbolic in Ω_{1} or Ω_{2} and elliptic in Ω_{3} or Ω_{4}.

