Numerical solution of differential equations

Example

Poisson equation $-y'' = 12x^2$ with boundary conditions y(-3) = y(3) = 0(can represent stationary heat or diffusion problem, or many others).

Discretization using the Finite Difference method with nodes X = (-2, -1, 0, 1, 2) leads to

2	$^{-1}$	0	0	0]	$\begin{bmatrix} y_1 \end{bmatrix}$]	[48]
-1	2	-1	0	0	y_2		12
0	-1	2	-1	0	y_3	=	0
0	0	-1	2	-1	y_4		12
0	0	0	$^{-1}$	2	y_5		48

where y_i are approximate values of the exact solution y(x) at the nodes.

Comparison of the exact solution $(y(x) = 81 - x^4)$, blue) and the numerical one (black dots):

Our roadmap

- 1. Methods for solving a system of algebraic equations both linear and nonlinear
- 2. Discretization of ODR, PDR, convergence of the numerical solution to the exact solution
- 3. Interpolation, approximation minor topic (1 week)