
Finite differences for PDE, Poisson eq. ver. 10.4.2023

Finite differences for second order linear PDE in 2 variables

The mathematical nature of solutions of a given partial differential equation depends on its type.
Numerical method for solving the equation should be chosen accordingly.

PDE are classified into three types:

• elliptic (example: Poisson equation)

• parabolic (example: heat equation)

• hyperbolic (example: wave equation)

Discretization of PDE (inside the given domain) consists of the three following steps:

1. Choosing the step-size in both directions and constructing the grid.

2. Expressing the equation at every grid node (inside the domain).

3. Substitution of derivatives with the finite differences.

Caution: All terms of the equation have to be expressed or approximated at the same grid node.

Poisson equation

Dirichlet problem for Poisson equation

We are seeking a function u ≡ u(x, y) which satisfies

−∆u = f(x, y) , where ∆u ≡ ∂2u

∂x2
+
∂2u

∂y2
, (1)

in the domain Ω and has prescribed values u(x, y) = φ(x, y) on its boundary Γ.

Discretization:

1. Both x and y in the equation are treated the same way (they usually represent spatial directions).
So it is natural to choose the same step-size h in both directions and construct a rectangular grid
of nodes over Ω with equal mesh spacing h in both directions.

Scheme of the grid around a grid node P k
i :

Notation:

P k
i ≡ [xi, yk] . . . grid nodes, where

xi . . . x-coordinates of the nodes: h = xi+1 − xi
yk . . . y-coordinates of the nodes: h = yk+1 − yk

u(x, y) . . . function of two variables defined in Ω, u(P k
i ) ≡ u(xi, yk)

Uk
i ≈ u(P k

i ) . . . approximate value of u(x, y) at a grid node P k
i
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2. Express the equation (1) at every interior node P k
i = [xi, yk]:

−∂
2u

∂x2
(P k

i )− ∂2u

∂y2
(P k

i ) = f(P k
i ) (2)

3. Partial derivatives at the node P k
i then can be approximated by the second central differences

with respect to x and y, respectively (see Figure 1):

∂2u

∂x2
(P k

i ) =
u(P k

i−1)− 2u(P k
i ) + u(P k

i+1)

h2
+O(h2)

∂2u

∂y2
(P k

i ) =
u(P k−1

i )− 2u(P k
i ) + u(P k+1

i )

h2
+O(h2)

Substitution of these differences into (2)

−
u(P k

i−1)− 2u(P k
i ) + u(P k

i+1)

h2
− u(P k−1

i )− 2u(P k
i ) + u(P k+1

i )

h2
+O(h2) = f(P k

i )

and omitting the term O(h2), so exact values u(P k
i ) have to be substituted with approximate ones Uk

i :

−
Uk
i−1 − 2Uk

i + Uk
i+1

h2
− Uk−1

i − 2Uk
i + Uk+1

i

h2
= f(P k

i ) .

After rearrangig, this leads to equation for 5 unknowns:

4Uk
i − Uk

i−1 − Uk
i+1 − Uk−1

i − Uk+1
i = h2 f(P k

i ) . (3)

This discretization scheme is called five-point stencil. The discretization is performed at every inner node,
which leads to a system of linear equations for unknowns Uk

i .

Figure 1: Grid nodes used for finite differences centered at the node P k
i . Left: 2-nd central difference

with respect to x. Center: 2-nd central difference with respect to y. Right: Five-point stencil for ∆u.

The equation (3) above can be used for regular nodes only: a node is called regular, if all its 4
neighbors in the five-point stencil lie inside Ω or on its boundary Γ (if some of its neighbors lie on Γ, use
corresponding prescribed boundary value and substitute it to the equation).

A non-regular node P is treated by linear interpolation, see Fig. 2: Here, the node R is one of the
neigbors of P and the point Q represents an intersection of the grid-line PR and the boundary Γ. This
2D graph is a section of the 3D graph of the approximate solution, by the plane P , Q, u(Q). The distance
between P and Q is expressed as a multiple of the step-size h, i.e. dist(P,Q)= d · h, where d ∈ (0, 1).

The equation corresponding to the node P is obtained from the assumption that the three points
[Q, u(Q)], [P,UP ] and [R,UR] are colinear. Then the similarity of triangles leads to

UP − UR

h
=
u(Q)− UR

h+ d · h
, or (1 + d) · UP − d · UR = u(Q) . (4)
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Figure 2: Treatment of the non-regular node P .

Problem 1

Consider Dirichlet problem for Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= y − x in Ω , u(x, y) = y on Γ,

where Ω is a pentagon with vertices [ - 1, 0 ], [ - 1, 1.5 ], [ 0, 1.5 ], [ 0.5, 1 ] and [ - 0.5, 0 ].

Choose the step-size h = 0.5 and compute approximate solution at the point [ - 0.5, 1 ] using finite
difference method.

Solution

In order to compute approximate value at the given point, we have to design a mesh over the domain, so
that the point is one of the nodes of the mesh, and compute values at all nodes of the mesh. First of all,
let us sketch the picture of the domain and the mesh and denote the nodes which we will use:

Figure 3: The given domain with interior nodes denoted as Pi and boundary nodes denoted as Qj .

There are 3 interior nodes P1 = [ - 0.5, 0.5 ], P2 = [ - 0.5, 1 ] and P3 = [ 0, 1 ], all of them are regular,
and 9 boundary nodes from which we will use just 7 denoted as Qj . We want to compute approximate
values U1, U2 and U3 of the solution at nodes Pi. Values at the nodes Qj can be computed in advance
from the boundary conditions:
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u(Q1) = u( −1 , 0.5) = 0.5
u(Q2) = u( −1 , 1) = 1
u(Q3) = u( −0.5 , 1.5) = 1.5
u(Q4) = u( 0 , 1.5) = 1.5
u(Q5) = u( 0.5 , 1) = 1
u(Q6) = u( 0 , 0.5) = 0.5
u(Q7) = u( −0.5 , 0) = 0

Let us prepare also the values of f(Pi):

f(P1) = y1 − x1 = 0.5− (−0.5) = 1
f(P2) = y2 − x2 = 1− (−0.5) = 1.5
f(P3) = y3 − x3 = 1− 0 = 1

Now we can assemble (and rearrange) one equation at every node Pi:

P1:
4U1 − U2 − u(Q1)− u(Q6)− u(Q7) = −h2 f(P1)
4U1 − U2 = −h2 f(P1) + u(Q1) + u(Q6) + u(Q7)
4U1 − U2 = −0.25 · 1 + 0.5 + 0.5 + 0 = 0.75
4U1 − U2 = 0.75

P2:
4U2 − U1 − U3 − u(Q2)− u(Q3) = −h2 f(P2)
4U2 − U1 − U3 = −h2 f(P2) + u(Q2) + u(Q3)
4U2 − U1 − U3 = −0.25 · 1.5 + 1 + 1.5 = 2.125
4U2 − U1 − U3 = 2.125

P3:
4U3 − U2 − u(Q4)− u(Q5)− u(Q6) = −h2 f(P3)
4U3 − U2 = −h2 f(P3) + u(Q4) + u(Q5) + u(Q6)
4U3 − U2 = −0.25 · 1 + 1.5 + 1 + 0.5 = 2.75
4U3 − U2 = 2.75

The resulting system of linear equations is

4U1 − U2 = 0.75
4U2 − U1 − U3 = 2.125
4U3 − U2 = 2.75

In matrix form  4 −1 0
−1 4 −1

0 −1 4

 U1

U2

U3

 =

 0.75
2.125
2.75


The solution: U1 = 0.4018, U2 = 0.8571, U3 = 0.9018 .

The approximate solution at the point P2 = [ - 0.5, 1 ] is U2 = 0.8571 .

Problem 2

Consider the same problem as in Problem 1 with a small change of the domain Ω:
move its last vertex a little to the right, so that the domain is now given by the vertices
[−1, 0 ], [ – 1, 1.5 ], [ 0, 1.5 ], [ 0.5, 1 ] and [ – 0.3, 0 ].
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Solution

There are four interior nodes now: the regular nodes P1, P2, P3 (regular node has no neighbor outside
Ω̄) and the new node P4 = [ 0, 0.5 ], which was originally the boundary node Q6 . The node P4 is
non-regular in the sense that its right mesh neighbor does not lie in the domain nor at the boundary (see
Fig , where the new part of the boundary and the new nodes P4 and Q8 are colored by the red color).

At regular nodes, the equations remain the same (with the only exception: there is a new unknown
U4 instead of the given boundary value u(Q6)):

P1:
4U1 − U2 − U4 − u(Q1)− u(Q7) = −h2 f(P1)
4U1 − U2 − U4 = −h2 f(P1) + u(Q1) + u(Q7)
4U1 − U2 − U4 = −0.25 · 1 + 0.5 + 0 = 0.25
4U1 − U2 − U4 = 0.25

P2:
4U2 − U1 − U3 − u(Q2)− u(Q3) = −h2 f(P2)
4U2 − U1 − U3 = −h2 f(P2) + u(Q2) + u(Q3)
4U2 − U1 − U3 = −0.25 · 1.5 + 1 + 1.5 = 2.125
4U2 − U1 − U3 = 2.125

P3:
4U3 − U2 − U4 − u(Q4)− u(Q5) = −h2 f(P3)
4U3 − U2 − U4 = −h2 f(P3) + u(Q4) + u(Q5)
4U3 − U2 − U4 = −0.25 · 1 + 1.5 + 1 = 2.25
4U3 − U2 − U4 = 2.25

The fourth equation corresponding to non-regular node P4 is given by linear interpolation (4) of the
value at P4 from the values at P1 and at the auxiliary point Q8 – the intersection of the line P1P4 and
the boundary. From similarity of triangles we obtain Q8 = [ 0.1, 0.5 ] with the prescribed value of
u(Q8) = u( 0.1 , 0.5) = 0.5 and dist(P4, Q8) = 0.1. Then from linear interpolation we have

U4 − U1

h
=

u(Q8)− U1

h+ dist(P4, Q8)
, after substitution

U4 − U1

0.5
=

0.5− U1

0.5 + 0.1
⇒ 0.6U4 − 0.1U1 = 0.25 .

The matrix form of the equations is
4 −1 0 −1
−1 4 −1 0

0 −1 4 −1
−0.1 0 0 0.6



U1

U2

U3

U4

 =


0.25
2.125
2.25
0.25


and the solution: U1 = 0.3969, U2 = 0.8547, U3 = 0.8969, U4 = 0.4828 .
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Problem 3

Consider Dirichlet problem for Poisson equation

−∆u = 4x− y in Ω , u(x, y) = 3− x on Γ,

where Ω = {[x, y] ∈ R2 : x > 0, x < 1.5, y < 0, 3y − x+ 6 > 0}.

a) Sketch the domain Ω and a mesh with step-size h = 0.5 with [ 0 ; 0 ] being one of the nodes of the
mesh. Mark regular and non-regular nodes of the mesh.

b) Use finite differences and assemble the system of discretized equations (use linear interpolation at
non-regular nodes.).

Solution

a) See Figure 4: regular nodes are A,B,C,D (denoted by black circles), non-regular E,F (denoted
by black squares). Node [0, 0] lies on the boundary (upper left corner).

Figure 4: The given domain with interior nodes denoted as A, . . . F and boundary nodes denoted as Qj .

b) Let UA, UB , UC , UD, UE , UF denote the approximate values of the solution u at nodesA,B,C,D,E, F ,
respectively. We need 6 equations for these 6 unknowns.

For regular nodes A,B,C,D, the 5-point scheme (3) is used:

4UA − UB − UC − u(Q4)− u(Q5) = h2 · f(A)

4UB − UA − UD − u(Q2)− u(Q3) = h2 · f(B)

4UC − UA − UD − UE − u(Q6) = h2 · f(C)

4UD − UB − UC − UF − u(Q1) = h2 · f(D)

So we need right hand side values f(x, y) = 4x− y at these nodes

f(A) = f(0.5,−0.5) = 4 · 0.5 + 0.5 = 2.5

f(B) = f(1,−0.5) = 4 · 1 + 0.5 = 4.5

f(C) = f(0.5,−1) = 4 · 0.5 + 1 = 3

f(D) = f(1,−1) = 4 · 1 + 1 = 5
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and prescribed boundary values u(x, y) = 3− x at nodes Q1, . . . Q6:

u(Q1) = u(Q2) = 3− 1.5 = 1.5

u(Q3) = 3− 1.0 = 2

u(Q4) = 3− 0.5 = 2.5

u(Q5) = u(Q6) = 3− 0 = 3.

Then the following 4 equations are obtained:

4UA − UB − UC = 0.52 · 2.5 + 2.5 + 3 = 6.125

4UB − UA − UD = 0.52 · 4.5 + 1.5 + 2 = 4.625

4UC − UA − UD − UE = 0.52 · 3 + 3 = 3.75

4UD − UB − UC − UF = 0.52 · 5 + 1.5 = 2.75

For non-regular nodes E,F , the linear interpolation (4) is used:

Node E: The closest intersection of the grid with the boundary Γ is the point Q7, so the correspond-
ing equation is obtained from the assumption that the points [Q7, u(Q7)], [E,UE ] and [C,UC ] are
colinear (in R3). All three points lie in the plane x = 0.5, therefore this problem can be restricted to
this plane. Then the similarity of triangles and using u(Q7) = 3− 0.5 = 2.5 and dist(E,Q7) = 2

3 h
lead to the equation (1 + 2

3 )UE − 2
3UC = 2.5.

Similarly for node F: points [Q8, u(Q8)], [F,UF ] and [D,UD] should be colinear, u(Q8) = 3−1 = 2,
dist(D,Q8) = 1

3 h, which leads to the equation (1 + 1
3 )UF − 1

3UD = 2.

Representation of these 6 equations in the matrix form (the last two eq. were multiplied by 3):
4 −1 −1 0 0 0
−1 4 0 −1 0 0
−1 0 4 −1 −1 0

0 −1 −1 4 0 −1
0 0 −2 0 5 0
0 0 0 −1 0 4




UA

UB

UC

UD

UE

UF

 =


6.125
4.625
3.75
2.75
7.5
6
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