
Differences for derivatives ver. 13.3.2023

Substitution of derivatives with finite differences

Finite differences: Approximations of derivatives f ′(x̂), f ′′(x̂), . . . with function
values f(xk) at some (finite) set of points xk, k = 1, . . . K.

Taylor theorem: Let the function f : R→ R be (n+ 1) times differentiable at some
open interval I ⊂ R and let the closed interval between points x̂ and x lie inside I. Let
h = x− x̂. Then

f(x̂+ h) = f(x̂) + f ′(x̂)h+
f ′′(x̂)

2!
h2 + · · ·+ f (n)(x̂)

n!
hn +O(hn+1)

Big O notation g(h) = O(hk) describes the limiting behavior of a function g(h)
as h → 0: Function g is said to be O(hk), if there exists a constant M such that
|g(h)| < M |h|k at some interval 0 < |h| < h0. (For more detailed explanation of this,
see the next page.)

Approximation of the first derivative:

Forward difference: Let f be twice differentiable at I, let h > 0. Then

f ′(x̂) =
f(x̂+ h)− f(x̂)

h
+O(h)

Proof: f(x̂+ h) = f(x̂) + f ′(x̂)h+O(h2), then rearange and divide by h.

Backward difference: Let f be twice differentiable at I, let h > 0. Then

f ′(x̂) =
f(x̂)− f(x̂− h)

h
+O(h)

Proof: f(x̂− h) = f(x̂)− f ′(x̂)h+O(h2), then rearange and divide by h.

Central difference: Let f be 3 times differentiable at I, let h > 0. Then

f ′(x̂) =
f(x̂+ h)− f(x̂− h)

2h
+O(h2)

Proof: f(x̂+ h) = f(x̂) + f ′(x̂)h+ f ′′(x̂)
2!

h2 +O(h3)

f(x̂− h) = f(x̂)− f ′(x̂)h+ f ′′(x̂)
2!

h2 +O(h3)

After subtraction: f(x̂+ h)− f(x̂− h) = 2f ′(x̂)h+O(h3), then after division by 2h,
the desired result is obtained.

Approximation of the second derivative:

Second Central difference: Let f be 4 times differentiable at I, let h > 0. Then

f ′′(x̂) =
f(x̂+ h)− 2f(x̂) + f(x̂− h)

h2
+O(h2)

Proof: f(x̂+ h) = f(x̂) + f ′(x̂)h+ f ′′(x̂)
2!

h2 + f (3)(x̂)
3!

h3 +O(h4)

f(x̂− h) = f(x̂)− f ′(x̂)h+ f ′′(x̂)
2!

h2 − f (3)(x̂)
3!

h3 +O(h4)

After addition: f(x̂ + h) + f(x̂ − h) = 2f(x̂) + f ′′(x̂)h2 + O(h4), then after division
by h2, the desired result is obtained.

1 c© Certik

Differences for derivatives ver. 13.3.2023

Big O notation

Notation g(h) = O(hp) does not mean literally g(h) is ”equal” to O(hp), rather it
stands for a statement like function g(h) belongs to the class O(hp). This class, or a
set of functions, consists of functions for which inequality |g(h)| < M |h|p holds for h
close to zero, or strictly speaking for which there exists constants M and h0 such that
in the interval 0 < |h| < h0 the inequality holds. Note that the constants M and h0 are
generally different for different functions g(h). Variable h usually represents the length
of a step. We typically discuss the order that provides the tightest upper bound.

Taylor’s remainder Rn(h) = O(hn+1) :

Suppose f (n+1) is continuous in < a, b > and x̂, x̂+ h ∈< a, b >. Then

f(x̂+h) = f(x̂)+f ′(x̂)h+
f ′′(x̂)

2!
h2+· · ·+f

(n)(x̂)

n!
hn+

f (n+1)(ξ)

(n+ 1)!
hn+1︸ ︷︷ ︸

Rn(h)

,

where ξ lies between x̂ and x̂+ h.

|Rn(h)| = |f (n+1)(ξ)|· 1

(n+ 1)!
|h|n+1 ≤ M

(n+ 1)!
|h|n+1 , where M = max

x∈<a, b>
|f (n+1)(x)| .

(Such constant M exists as continuity of f (n+1) in < a, b > is assumed.)

Behavior of c |h|n :

Left: |h|2 blue, |h|3 green, |h|4 red. Right: |h|2 blue, 3 |h|3 green, 7 |h|4 red.

Figure on the right illustrates that close to zero, any multiple of a higher power of |h|n
always tends to zero more quickly than a multiple of its lower power.

2 c© Certik

Differences for derivatives ver. 13.3.2023

Basic computations with O(hp)

• h · O(hp) = O(hp+1) . . . means that if g(h) = O(hp), then h · g(h) = O(hp+1)

proof: |h g(h)| = |h| |g(h)| < |h|M |h|p = M |h|p+1

•

O(hp)

h
= O(hp−1) . . . means that if g(h) = O(hp), then g(h)/h = O(hp−1)

proof: similarly as above

• a · O(hp) = O(hp) . . . means that if g(h) = O(hp), then a · g(h) = O(hp)

proof: |a g(h)| = |a| |g(h)| < |a|M |h|p

• if p ≤ q, then O(hp)±O(hq) = O(hp) (specially O(hp)−O(hp) = O(hp))

. . . means that if g(h) = O(hp), f(h) = O(hq), then |g(h)±f(h)| = O(hp), proof:

|g(h) ± f(h)| ≤ |g(h)| + |f(h)| < M |h|p + N |h|q ≤ max(M,N) (|h|p + |h|q) <
2 max(M,N) |h|p

(because |h|p > |h|q for |h| < 1)

Behavior of errors for methods of different order

Question: What improvement in global error can we expect after halving the step?

Euler method – the first order method: norm of the global error ‖e(h)‖ = O(h)

‖e(h)‖ < M |h|, ‖e(h
2
)‖ < M |h

2
| = M

2
|h| . . . the error can be expected 2-times less

Midpoint (Collatz) method – the 2-nd order method: ‖e(h)‖ = O(h2)

‖e(h)‖ < M |h|2, ‖e(h
2
)‖ < M |h

2
|2 = M

4
|h|2 . . . the error can be expected 4-times less

Comment: Not only in numerical analysis the Big-O notation occurs. In computer
science, when O(np) is used, large values of n are considered. It is used for measuring
the complexity of algorithms (n typically represents a size of a problem and np is a
number of algorithm operations). Therefore we should be aware of the type of the
limit: either h → 0, which is used in numerical analysis, or n → ∞, which is used in
computer science. Usually this is distinguished also by the letters used: h for limit to
zero and n for limit to infinity.

3 c© Certik

