Substitution of derivatives with finite differences

Finite differences: Approximations of derivatives $f'(\hat{x}), f''(\hat{x}), \ldots$ with function values $f(x_k)$ at some (finite) set of points $x_k, k = 1, \ldots, K$.

Taylor theorem: Let the function $f : R \to R$ be (n+1) times differentiable at some open interval $I \subset R$ and let the closed interval between points \hat{x} and x lie inside I. Let $h = x - \hat{x}$. Then

$$f(\hat{x}+h) = f(\hat{x}) + f'(\hat{x})h + \frac{f''(\hat{x})}{2!}h^2 + \dots + \frac{f^{(n)}(\hat{x})}{n!}h^n + \mathcal{O}(h^{n+1})$$

Big \mathcal{O} notation $g(h) = \mathcal{O}(h^k)$ describes the limiting behavior of a function g(h)as $h \to 0$: Function g is said to be $\mathcal{O}(h^k)$, if there exists a constant M such that $|g(h)| < M |h|^k$ at some interval $0 < |h| < h_0$. (For more detailed explanation of this, see the next page.)

Approximation of the first derivative:

Forward difference: Let f be twice differentiable at I, let h > 0. Then

$$f'(\widehat{x}) = \frac{f(\widehat{x}+h) - f(\widehat{x})}{h} + \mathcal{O}(h)$$

Proof: $f(\hat{x} + h) = f(\hat{x}) + f'(\hat{x})h + \mathcal{O}(h^2)$, then rearange and divide by h.

Backward difference: Let f be twice differentiable at I, let h > 0. Then

$$f'(\widehat{x}) = \frac{f(\widehat{x}) - f(\widehat{x} - h)}{h} + \mathcal{O}(h)$$

Proof: $f(\hat{x} - h) = f(\hat{x}) - f'(\hat{x})h + \mathcal{O}(h^2)$, then rearange and divide by h.

Central difference: Let f be 3 times differentiable at I, let h > 0. Then

$$f'(\widehat{x}) = \frac{f(\widehat{x}+h) - f(\widehat{x}-h)}{2h} + \mathcal{O}(h^2)$$

Proof: $f(\hat{x}+h) = f(\hat{x}) + f'(\hat{x})h + \frac{f''(\hat{x})}{2!}h^2 + \mathcal{O}(h^3)$ $f(\hat{x}-h) = f(\hat{x}) - f'(\hat{x})h + \frac{f''(\hat{x})}{2!}h^2 + \mathcal{O}(h^3)$

After subtraction: $f(\hat{x} + h) - f(\hat{x} - h) = 2f'(\hat{x})h + \mathcal{O}(h^3)$, then after division by 2h, the desired result is obtained.

Approximation of the second derivative:

Second Central difference: Let f be 4 times differentiable at I, let h > 0. Then

$$f''(\widehat{x}) = \frac{f(\widehat{x}+h) - 2f(\widehat{x}) + f(\widehat{x}-h)}{h^2} + \mathcal{O}(h^2)$$

Proof: $f(\hat{x}+h) = f(\hat{x}) + f'(\hat{x})h + \frac{f''(\hat{x})}{2!}h^2 + \frac{f^{(3)}(\hat{x})}{3!}h^3 + \mathcal{O}(h^4)$ $f(\hat{x}-h) = f(\hat{x}) - f'(\hat{x})h + \frac{f''(\hat{x})}{2!}h^2 - \frac{f^{(3)}(\hat{x})}{3!}h^3 + \mathcal{O}(h^4)$

After addition: $f(\hat{x} + h) + f(\hat{x} - h) = 2f(\hat{x}) + f''(\hat{x})h^2 + \mathcal{O}(h^4)$, then after division by h^2 , the desired result is obtained.

Big ${\mathcal O}$ notation

Notation $g(h) = \mathcal{O}(h^p)$ does not mean literally g(h) is "equal" to $\mathcal{O}(h^p)$, rather it stands for a statement like function g(h) belongs to the class $\mathcal{O}(h^p)$. This class, or a set of functions, consists of functions for which inequality $|g(h)| < M |h|^p$ holds for hclose to zero, or strictly speaking for which there exists constants M and h_0 such that in the interval $0 < |h| < h_0$ the inequality holds. Note that the constants M and h_0 are generally different for different functions g(h). Variable h usually represents the length of a step. We typically discuss the order that provides the tightest upper bound.

Taylor's remainder $R_n(h) = \mathcal{O}(h^{n+1})$:

Suppose $f^{(n+1)}$ is continuous in $\langle a, b \rangle$ and $\hat{x}, \hat{x} + h \in \langle a, b \rangle$. Then

$$f(\widehat{x}+h) = f(\widehat{x}) + f'(\widehat{x}) h + \frac{f''(\widehat{x})}{2!} h^2 + \dots + \frac{f^{(n)}(\widehat{x})}{n!} h^n + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}}_{R_n(h)},$$

where ξ lies between \hat{x} and $\hat{x} + h$.

$$|R_n(h)| = |f^{(n+1)}(\xi)| \cdot \frac{1}{(n+1)!} |h|^{n+1} \le \frac{M}{(n+1)!} |h|^{n+1}, \quad \text{where } M = \max_{x \in \langle a, b \rangle} |f^{(n+1)}(x)|.$$

(Such constant M exists as continuity of $f^{(n+1)}$ in $\langle a, b \rangle$ is assumed.)

Behavior of $c |h|^n$:

Figure on the right illustrates that close to zero, any multiple of a higher power of $|h|^n$ always tends to zero more quickly than a multiple of its lower power.

Basic computations with $\mathcal{O}(h^p)$

• $h \cdot \mathcal{O}(h^p) = \mathcal{O}(h^{p+1})$... means that if $g(h) = \mathcal{O}(h^p)$, then $h \cdot g(h) = \mathcal{O}(h^{p+1})$ proof: $|h g(h)| = |h| |g(h)| < |h| M |h|^p = M |h|^{p+1}$

$$\frac{\mathcal{O}(h^p)}{h} = \mathcal{O}(h^{p-1}) \dots \text{ means that if } g(h) = \mathcal{O}(h^p), \text{ then } g(h)/h = \mathcal{O}(h^{p-1})$$

proof: similarly as above

- $a \cdot \mathcal{O}(h^p) = \mathcal{O}(h^p)$... means that if $g(h) = \mathcal{O}(h^p)$, then $a \cdot g(h) = \mathcal{O}(h^p)$ proof: $|a g(h)| = |a| |g(h)| < |a| M |h|^p$
- if $p \leq q$, then $\mathcal{O}(h^p) \pm \mathcal{O}(h^q) = \mathcal{O}(h^p)$ (specially $\mathcal{O}(h^p) \mathcal{O}(h^p) = \mathcal{O}(h^p)$) ... means that if $g(h) = \mathcal{O}(h^p)$, $f(h) = \mathcal{O}(h^q)$, then $|g(h) \pm f(h)| = \mathcal{O}(h^p)$, proof: $|g(h) \pm f(h)| \leq |g(h)| + |f(h)| < M |h|^p + N |h|^q \leq \max(M, N) (|h|^p + |h|^q) < 2 \max(M, N) |h|^p$ (because $|h|^p > |h|^q$ for |h| < 1)

Behavior of errors for methods of different order

Question: What improvement in global error can we expect after halving the step?

Euler method – the first order method: norm of the global error $||e(h)|| = \mathcal{O}(h)$ $||e(h)|| < M |h|, ||e(\frac{h}{2})|| < M |\frac{h}{2}| = \frac{M}{2} |h|$... the error can be expected 2-times less **Midpoint (Collatz) method** – the 2-nd order method: $||e(h)|| = \mathcal{O}(h^2)$ $||e(h)|| < M |h|^2, ||e(\frac{h}{2})|| < M |\frac{h}{2}|^2 = \frac{M}{4} |h|^2$... the error can be expected 4-times less

Comment: Not only in numerical analysis the $Big-\mathcal{O}$ notation occurs. In computer science, when $\mathcal{O}(n^p)$ is used, *large* values of n are considered. It is used for measuring the complexity of algorithms (n typically represents a size of a problem and n^p is a number of algorithm operations). Therefore we should be aware of the type of the limit: either $h \to 0$, which is used in numerical analysis, or $n \to \infty$, which is used in computer science. Usually this is distinguished also by the letters used: h for limit to zero and n for limit to infinity.