Substitution of derivatives with finite differences

Finite differences: Approximations of derivatives $f^{\prime}(\widehat{x}), f^{\prime \prime}(\widehat{x}), \ldots$ with function values $f\left(x_{k}\right)$ at some (finite) set of points $x_{k}, k=1, \ldots K$.

Taylor theorem: Let the function $f: R \rightarrow R$ be $(n+1)$ times differentiable at some open interval $I \subset R$ and let the closed interval between points \widehat{x} and x lie inside I. Let $h=x-\widehat{x}$. Then

$$
f(\widehat{x}+h)=f(\widehat{x})+f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime}(\widehat{x})}{2!} h^{2}+\cdots+\frac{f^{(n)}(\widehat{x})}{n!} h^{n}+\mathcal{O}\left(h^{n+1}\right)
$$

Big \mathcal{O} notation $g(h)=\mathcal{O}\left(h^{k}\right)$ describes the limiting behavior of a function $g(h)$ as $h \rightarrow 0$: Function g is said to be $\mathcal{O}\left(h^{k}\right)$, if there exists a constant M such that $|g(h)|<M|h|^{k}$ at some interval $0<|h|<h_{0}$. (For more detailed explanation of this, see the next page.)

Approximation of the first derivative:

Forward difference: Let f be twice differentiable at I, let $h>0$. Then

$$
f^{\prime}(\widehat{x})=\frac{f(\widehat{x}+h)-f(\widehat{x})}{h}+\mathcal{O}(h)
$$

Proof: $f(\widehat{x}+h)=f(\widehat{x})+f^{\prime}(\widehat{x}) h+\mathcal{O}\left(h^{2}\right)$, then rearange and divide by h.
Backward difference: Let f be twice differentiable at I, let $h>0$. Then

$$
f^{\prime}(\widehat{x})=\frac{f(\widehat{x})-f(\widehat{x}-h)}{h}+\mathcal{O}(h)
$$

Proof: $f(\widehat{x}-h)=f(\widehat{x})-f^{\prime}(\widehat{x}) h+\mathcal{O}\left(h^{2}\right)$, then rearange and divide by h.
Central difference: Let f be 3 times differentiable at I, let $h>0$. Then

$$
f^{\prime}(\widehat{x})=\frac{f(\widehat{x}+h)-f(\widehat{x}-h)}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

Proof: $\quad f(\widehat{x}+h)=f(\widehat{x})+f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime}(\widehat{x})}{2!} h^{2}+\mathcal{O}\left(h^{3}\right)$

$$
f(\widehat{x}-h)=f(\widehat{x})-f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime \prime}(\widehat{x})}{2!} h^{2}+\mathcal{O}\left(h^{3}\right)
$$

After subtraction: $f(\widehat{x}+h)-f(\widehat{x}-h)=2 f^{\prime}(\widehat{x}) h+\mathcal{O}\left(h^{3}\right)$, then after division by $2 h$, the desired result is obtained.

Approximation of the second derivative:

Second Central difference: Let f be 4 times differentiable at I, let $h>0$. Then

$$
f^{\prime \prime}(\widehat{x})=\frac{f(\widehat{x}+h)-2 f(\widehat{x})+f(\widehat{x}-h)}{h^{2}}+\mathcal{O}\left(h^{2}\right)
$$

Proof: $f(\widehat{x}+h)=f(\widehat{x})+f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime}(\widehat{x})}{2!} h^{2}+\frac{f^{(3)}(\widehat{x})}{3!} h^{3}+\mathcal{O}\left(h^{4}\right)$

$$
f(\widehat{x}-h)=f(\widehat{x})-f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime}(\widehat{x})}{2!} h^{2}-\frac{f^{(3)}(\widehat{x})}{3!} h^{3}+\mathcal{O}\left(h^{4}\right)
$$

After addition: $f(\widehat{x}+h)+f(\widehat{x}-h)=2 f(\widehat{x})+f^{\prime \prime}(\widehat{x}) h^{2}+\mathcal{O}\left(h^{4}\right)$, then after division by h^{2}, the desired result is obtained.

Big \mathcal{O} notation

Notation $g(h)=\mathcal{O}\left(h^{p}\right)$ does not mean literally $g(h)$ is "equal" to $\mathcal{O}\left(h^{p}\right)$, rather it stands for a statement like function $g(h)$ belongs to the class $\mathcal{O}\left(h^{p}\right)$. This class, or a set of functions, consists of functions for which inequality $|g(h)|<M|h|^{p}$ holds for h close to zero, or strictly speaking for which there exists constants M and h_{0} such that in the interval $0<|h|<h_{0}$ the inequality holds. Note that the constants M and h_{0} are generally different for different functions $g(h)$. Variable h usually represents the length of a step. We typically discuss the order that provides the tightest upper bound.

Taylor's remainder $R_{n}(h)=\mathcal{O}\left(h^{n+1}\right)$:
Suppose $f^{(n+1)}$ is continuous in $\langle a, b\rangle$ and $\widehat{x}, \widehat{x}+h \in\langle a, b\rangle$. Then

$$
f(\widehat{x}+h)=f(\widehat{x})+f^{\prime}(\widehat{x}) h+\frac{f^{\prime \prime}(\widehat{x})}{2!} h^{2}+\cdots+\frac{f^{(n)}(\widehat{x})}{n!} h^{n}+\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}}_{R_{n}(h)},
$$

where ξ lies between \widehat{x} and $\widehat{x}+h$.
$\left|R_{n}(h)\right|=\left|f^{(n+1)}(\xi)\right| \cdot \frac{1}{(n+1)!}|h|^{n+1} \leq \frac{M}{(n+1)!}|h|^{n+1}, \quad$ where $M=\max _{x \in<a, b>}\left|f^{(n+1)}(x)\right|$.
(Such constant M exists as continuity of $f^{(n+1)}$ in $\langle a, b\rangle$ is assumed.)

Behavior of $c|h|^{n}$:

Left: $|h|^{2}$ blue, $|h|^{3}$ green, $|h|^{4}$ red.

Right: $|h|^{2}$ blue, $3|h|^{3}$ green, $7|h|^{4}$ red.

Figure on the right illustrates that close to zero, any multiple of a higher power of $|h|^{n}$ always tends to zero more quickly than a multiple of its lower power.

Basic computations with $\mathcal{O}\left(h^{p}\right)$

- $h \cdot \mathcal{O}\left(h^{p}\right)=\mathcal{O}\left(h^{p+1}\right) \ldots$ means that if $g(h)=\mathcal{O}\left(h^{p}\right)$, then $h \cdot g(h)=\mathcal{O}\left(h^{p+1}\right)$ proof: $|h g(h)|=|h||g(h)|<|h| M|h|^{p}=M|h|^{p+1}$
$\frac{\mathcal{O}\left(h^{p}\right)}{h}=\mathcal{O}\left(h^{p-1}\right) \ldots$ means that if $g(h)=\mathcal{O}\left(h^{p}\right)$, then $g(h) / h=\mathcal{O}\left(h^{p-1}\right)$
proof: similarly as above
- $a \cdot \mathcal{O}\left(h^{p}\right)=\mathcal{O}\left(h^{p}\right) \ldots$ means that if $g(h)=\mathcal{O}\left(h^{p}\right)$, then $a \cdot g(h)=\mathcal{O}\left(h^{p}\right)$
proof: $|\operatorname{ag}(h)|=|a||g(h)|<|a| M|h|^{p}$
- if $p \leq q$, then $\mathcal{O}\left(h^{p}\right) \pm \mathcal{O}\left(h^{q}\right)=\mathcal{O}\left(h^{p}\right) \quad\left(\right.$ specially $\left.\mathcal{O}\left(h^{p}\right)-\mathcal{O}\left(h^{p}\right)=\mathcal{O}\left(h^{p}\right)\right)$
\ldots means that if $g(h)=\mathcal{O}\left(h^{p}\right), f(h)=\mathcal{O}\left(h^{q}\right)$, then $|g(h) \pm f(h)|=\mathcal{O}\left(h^{p}\right)$, proof:
$|g(h) \pm f(h)| \leq|g(h)|+|f(h)|<M|h|^{p}+N|h|^{q} \leq \max (M, N)\left(|h|^{p}+|h|^{q}\right)<$ $2 \max (M, N)|h|^{p}$
(because $|h|^{p}>|h|^{q}$ for $|h|<1$)

Behavior of errors for methods of different order

Question: What improvement in global error can we expect after halving the step?
Euler method - the first order method: norm of the global error $\|e(h)\|=\mathcal{O}(h)$ $\|e(h)\|<M|h|,\left\|e\left(\frac{h}{2}\right)\right\|<M\left|\frac{h}{2}\right|=\frac{M}{2}|h| \ldots$ the error can be expected 2-times less
Midpoint (Collatz) method - the 2-nd order method: $\|e(h)\|=\mathcal{O}\left(h^{2}\right)$ $\|e(h)\|<M|h|^{2},\left\|e\left(\frac{h}{2}\right)\right\|<M\left|\frac{h}{2}\right|^{2}=\frac{M}{4}|h|^{2} \ldots$ the error can be expected 4 -times less

Comment: Not only in numerical analysis the Big-O notation occurs. In computer science, when $\mathcal{O}\left(n^{p}\right)$ is used, large values of n are considered. It is used for measuring the complexity of algorithms (n typically represents a size of a problem and n^{p} is a number of algorithm operations). Therefore we should be aware of the type of the limit: either $h \rightarrow 0$, which is used in numerical analysis, or $n \rightarrow \infty$, which is used in computer science. Usually this is distinguished also by the letters used: h for limit to zero and n for limit to infinity.

