NMA - homework from week 1

1. Consider a matrix A and a vector v :

$$
A=\left[\begin{array}{rrr}
4 & 2 & 5 \\
0 & 3 & 1 \\
0 & -13 & -1
\end{array}\right] \quad v=\left[\begin{array}{r}
-6 \\
4 \\
-1
\end{array}\right]
$$

a) Compute row, column and Frobenius norms of the matrix A and the vector v.
b) Compute spectral radius $\rho(A)$ of the matrix A and compare it with the norms computed before.
c) What can you now say about the value of the spectral norm of the matrix A ? (Hint: you know its Frobenius norm and its spectral radius.)
Check your forecast by computing the spectral norm (using Matlab).
2. Consider a matrix A :

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

a) Compute row, column and Frobenius norms of the matrix A.
b) Name some important properties of the matrix A and prove them.
c) Which of the five values $\{1,0,-1,3-2 i, 6\}$ cannot be eigenvalues of the matrix A and why? Answer this question before you compute the actual eigenvalues; use reasoning based on your previous answers to a) and b) only. Then compute all eigenvalues λ_{i} of the matrix A.
d) Compute spectral radius $\rho(A)$ of the matrix A and compare it with other norms computed before. What can you say about spectral norm of this matrix, if you know its spectral radius?

