1. Fixed Point Iterations (FPI): Consider a linear system $x=U x+v$, where

$$
U=\left[\begin{array}{rr}
0 & -0.49 \\
1 & 0
\end{array}\right] \quad v=\left[\begin{array}{r}
5 \\
10
\end{array}\right] .
$$

(a) Will FPI converge for this system? Give reasons for your answer.
(b) Use $x^{(0)}=v$ and compute $x^{(1)}$ and $x^{(2)}$ using FPI.
(c) Compute $\left\|x^{(2)}-x^{(1)}\right\|_{\infty}$, i.e. the row norm of the difference between the vectors $x^{(2)}$ and $x^{(1)}$.
2. Jacobi (J) method: Consider a linear system $A x=b$, where

$$
A=\left[\begin{array}{rrr}
1 & -10 & -2 \\
-1 & 5 & 0 \\
2 & 0 & 2
\end{array}\right] \quad b=\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right] .
$$

(a) Will J method converge for the given system? Give reasons for your answer.
(b) Choose $x^{(0)}=b$ and compute $x^{(1)}$ and $x^{(2)}$ using J method.
3. Gauss-Seidel (GS) method: Consider a linear system $F x=g$, where

$$
F=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & p & 1 \\
0 & 1 & 3
\end{array}\right] \quad g=\left[\begin{array}{r}
3 p \\
-1 \\
4
\end{array}\right], \quad p \in R \text { is a parameter. }
$$

(a) Find all values of p such that the matrix F is strictly diagonally dominant.
(b) Find all values of p such that the matrix F is symmetric positive definite.
(c) Choose $p=1, x^{(0)}=[0,0,0]^{T}$ and compute $x^{(1)}$ and $x^{(2)}$ using $G S$ method.
(d) Will $G S$ method converge for $p=1$? Give reasons for your answer.

