NMA – homework from week 2

1. Fixed Point Iterations (FPI): Consider a linear system x = Ux + v, where

$$U = \left[\begin{array}{cc} 0 & -0.49 \\ 1 & 0 \end{array} \right] \qquad v = \left[\begin{array}{c} 5 \\ 10 \end{array} \right].$$

- (a) Will FPI converge for this system? Give reasons for your answer.
- (b) Use $x^{(0)} = v$ and compute $x^{(1)}$ and $x^{(2)}$ using *FPI*.
- (c) Compute $||x^{(2)} x^{(1)}||_{\infty}$, i.e. the row norm of the difference between the vectors $x^{(2)}$ and $x^{(1)}$.

2. Jacobi (J) method: Consider a linear system Ax = b, where

	1	-10	-2		1	1
A =	-1	5	0	b =	-4	.
	2	0	2		3	

- (a) Will J method converge for the given system? Give reasons for your answer.
- (b) Choose $x^{(0)} = b$ and compute $x^{(1)}$ and $x^{(2)}$ using J method.

3. Gauss-Seidel (GS) method: Consider a linear system Fx = g, where

$$F = \begin{bmatrix} 3 & 1 & 0 \\ 1 & p & 1 \\ 0 & 1 & 3 \end{bmatrix} \qquad g = \begin{bmatrix} 3p \\ -1 \\ 4 \end{bmatrix}, \qquad p \in R \text{ is a parameter.}$$

- (a) Find all values of p such that the matrix F is strictly diagonally dominant.
- (b) Find all values of p such that the matrix F is symmetric positive definite.
- (c) Choose p = 1, $x^{(0)} = [0, 0, 0]^T$ and compute $x^{(1)}$ and $x^{(2)}$ using GS method.
- (d) Will GS method converge for p = 1? Give reasons for your answer.