## NMA - homework from week 5

## System of equations

Consider Cauchy problem

$$
Y^{\prime}=\left[\begin{array}{c}
y_{1}+y_{2} \\
-\ln \left(\frac{x}{y_{2}}\right)-2 \sqrt{x+4}
\end{array}\right] \quad Y(-2)=\left[\begin{array}{r}
1 \\
-3
\end{array}\right] .
$$

(a) Find a domain $G$ where the conditions of existence and uniqueness of the solution are satisfied.
(b) Choose step-size $h=0.5$ and using explicit Euler method compute the approximate value of $Y(-1.5)$.
(c) Choose step-size $h=0.5$ and write down the system of equations from which the approximate value of $Y(-1.5)$ would be computed using implicit Euler method (do not solve the system).
(d) Choose step-size $h=0.5$ and using the midpoint method compute the approximate value of $Y(-1.5)$.

