Fixed point iterations

The goal: find the solution of a fixed point equation

$$X = G(X)$$
, where $X \in \mathbb{R}^n$, $G : \mathbb{R}^n \to \mathbb{R}^n$

The method: choose $X^{(0)}$, then for k = 0, 1, 2, ... compute

$$X^{(k+1)} = G(X^{(k)})$$

Example: Consider the following system of nonlinear equations

$$\begin{array}{rcl} x_1 &=& 1+0.2\,\sin(x_1-2x_2)\\ x_2 &=& \sqrt{x_1+x_2+4} \end{array}$$

We have

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad G(X) = \begin{bmatrix} g_1(x_1, x_2) \\ g_2(x_1, x_2) \end{bmatrix} = \begin{bmatrix} 1 + 0.2 \sin(x_1 - 2x_2) \\ \sqrt{x_1 + x_2 + 4} \end{bmatrix}.$$

Theorem 1 – contraction mapping theorem:

Let $D \subset \mathbb{R}^n$, D be closed, $G: D \to \mathbb{R}^n$. Assume

- 1. if $X \in D$, then $G(X) \in D$
- 2. the mapping G is a contraction on D: there exists q < 1 such that

$$||G(X) - G(Y)|| \le q ||X - Y|| \qquad \forall X, Y \in D$$
(1)

Then

• there exists a unique $X^* \in D$ such that $X^* = G(X^*)$ and the fixed point iterations converge to X^* for any choice of $X^{(0)} \in D$,

• $X^{(k)}$ satisfies the a-priori error estimate $||X^{(k)} - X^*|| \le \frac{q^k}{1-q} ||X^{(1)} - X^{(0)}||$ and the a-posteriori error estimate $||X^{(k)} - X^*|| \le \frac{q}{1-q} ||X^{(k)} - X^{(k-1)}||$.

Proof: see [1]

Note: The norm $\|.\|$ in Theorem 1 can be *any* vector norm (however, the same in both the assumptions and the proposition).

Theorem 2 – the contraction property:

Let $D \subset \mathbb{R}^n$, D be convex, $G : D \to \mathbb{R}^n$ has continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$ in D. Assume there exists q < 1 such that the matrix norm of the Jacobian $\|G'(X)\| < q, \ \forall X \in D$. Then G is a contraction in D and satisfies (1).

Proof: see [1]

Note: The norm $\|.\|$ in Theorem 2 can be *any* matrix norm consistent with the vector norm in (1).

Example continued – the Jacobi matrix

$$G'(X) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.2 \cos(x_1 - 2x_2) & -0.4 \cos(x_1 - 2x_2) \\ \frac{1}{2\sqrt{x_1 + x_2 + 4}} & \frac{1}{2\sqrt{x_1 + x_2 + 4}} \end{bmatrix}$$

is continuous on $\Omega = \{X \in \mathbb{R}^2 : x_1 > -\frac{1}{2}, x_2 > -\frac{1}{2}\}$ and Ω is convex.

Let us try the row norm first, because the computation seems to be the simplest: $\|G'(X)\|_{\infty} = \max(|0.2 \cos(x_1 - 2x_2)| + |-0.4 \cos(x_1 - 2x_2)|, 2|\frac{1}{2\sqrt{x_1 + x_2 + 4}}|) \le \max(0.6, \frac{1}{\sqrt{3}}) = 0.6.$ Assumptions of Theorem 2 hold, so G is a contraction on Ω .

Choose $D = \{X \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0\} \subset \Omega$. Then D is closed, $G(D) \subset D$ and according to Theorem 1, there exists a unique solution in D and FPI converge for any $X^{(0)} \in D$. Starting at the origin, we have (rounded to 4 decimal places)

$$X^{(0)} = \begin{bmatrix} 0\\ 0 \end{bmatrix}, X^{(1)} = \begin{bmatrix} 1\\ 2 \end{bmatrix}, X^{(2)} = \begin{bmatrix} 0.9718\\ 2.6458 \end{bmatrix}, \dots X^{(9)} = \begin{bmatrix} 1.1943\\ 2.8333 \end{bmatrix} = X^{(10)} = X^{(11)},$$

so we stop and verify the result: $X^{(9)} - G(X^{(9)}) = \begin{bmatrix} 3.7 \cdot 10^{-5}\\ -1.9 \cdot 10^{-6} \end{bmatrix}.$

Fixed point iterations for linear systems

Motivation

Typical matrix resulting from discretization of differential equations is *sparse*. Example – discretization of Poisson equation in 2D square domain using finite differences $(11 \times 11 \text{ grid}, \text{ zero Dirichlet boundary condition})$:

- a banded matrix 81×81 , the bandwidth h = 10.

Consider $n \times n$ matrix with bandwidth $h = c \cdot n$ ($c \approx 0.12$ in our example).

For $n = 10^6$: 5 nonzero diagonals represent approximately $5n = 5 \cdot 10^6$ nonzeros

Gauss elimination fills in the whole band – approx. $h \cdot n = c \cdot n^2 = c \cdot 10^{12} \approx 10^{11}$ nonzeros – about $2 \cdot 10^4$ -times more computer memory is needed!

Fixed point iterations for X = UX + V

Assume G(X) = UX + V, where U is a $n \times n$ matrix, $V \in \mathbb{R}^n$, so the fixed point equation now represents a system of linear equations X = UX + V:

$$\begin{aligned} x_1 &= u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n + v_1 \\ x_2 &= u_{21}x_1 + u_{22}x_2 + \dots + u_{2n}x_n + v_2 \\ \dots \\ x_n &= u_{n1}x_1 + u_{n2}x_2 + \dots + u_{nn}x_n + v_n . \end{aligned}$$

Under which assumptions the convergence of the fixed point iterations

$$X^{(k+1)} = U X^{(k)} + V$$

is guaranteed on \mathbb{R}^n ?

From properties of any norm on \mathbb{R}^n and its consistent matrix norm, $\|G(X) - G(Y)\| = \|UX + V - (UY + V)\| = \|UX - UY\| = \|U(X - Y)\| \le \|U\| \|X - Y\|$ holds $\forall X, Y \in \mathbb{R}^n$, so the theorem follows:

Theorem 3 – **sufficient condition** for convergence of FPI:

If there exists a matrix norm such that ||U|| < 1, then the mapping G(X) = UX + V is a contraction on \mathbb{R}^n . *Proof:* above

Now from Theorem 1 it follows that fixed point iterations $X^{(k+1)} = UX^{(k)} + V$ converge to the (unique) fixed point X^* for any choice of $X^{(0)}$. Moreover, both a-priori and a-posterirori error estimates hold with choice of q = ||U|| < 1 (provided the matrix norm and the vector norms are consistent).

What can be said about convergence of FPI, if there is no norm found for which ||U|| < 1?

Analysis of an error

Let $e^{(k)} = X^{(k)} - X^*$ be an error in k-th iteration of FPI. Then $e^{(k)} = X^{(k)} - X^* = (U X^{(k-1)} + V) - (U X^* + V) = U (X^{(k-1)} - X^*) = U e^{(k-1)}$ $e^{(k)} = U e^{(k-1)} = U^2 e^{(k-2)} = \dots = U^k e^{(0)}$

Theorem 4 – necessary and sufficient condition for convergence of FPI:

The iteration process $X^{(k+1)} = U X^{(k)} + V$ converges to the fixed point X^* for any choice of $X^{(0)}$, if and only if $\rho(U) < 1$.

Proof: follows from the analysis of an error above and from the property

 $U^k \to 0 \iff \rho(U) < 1.$ (see [2], Th. 1.10)

Methods for solving AX = B based on fixed point iterations

The idea: transform AX = B to X = UX + V and use the fixed point iterations.

Richardson method – the most straightforward method:

$$AX = B$$

$$0 = B - AX$$

$$0 = \alpha (B - AX), \quad \alpha \neq 0$$

$$X = X + \alpha (B - AX)$$

$$X = (I - \alpha A) X + \alpha B$$

FPI: $X^{(k+1)} = U X^{(k)} + V$, where $U = I - \alpha A$ and $V = \alpha B$

Sufficient conditions (on matrix A) for convergence:

• Let A be symmetric positive definite (or sym. negative definite). Then there exists $\alpha \in R$ such that Richardson method converges.

Proof: Let λ_i be the eigenvalues of A, assume real, $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Then $\mu_i = 1 - \alpha \lambda_i$ are eigenvalues of U and

$$\rho(U) < 1 \iff -1 < 1 - \alpha \lambda_i < 1 \iff \alpha \lambda_i < 2 \text{ and } 0 < \alpha \lambda_i.$$

The first inequality can always be satisfied for some α , the second inequality can be satisfied only if all λ_i 's have the same sign.

Jacobi and Gauss-Seidel methods

Decompose given matrix A as A = L + D + R, where D is a diagonal matrix, L is a lower triangular and R is an upper triangular matrix. Assume that A has no zero elements on diagonal, so that inverse D^{-1} of D exists and also $(L + D)^{-1}$ exists.

Jacobi method

$$AX = B$$

$$(L + D + R) X = B$$

$$DX = -(L + R) X + B$$

$$X = -D^{-1}(L + R) X + D^{-1}B$$

FPI: $X^{(k+1)} = U_J X^{(k)} + V_J$, where $U_J = -D^{-1}(L+R)$ and $V_J = D^{-1}B$

Gauss-Seidel method

$$AX = B$$

$$(L + D + R) X = B$$

$$(L + D) X = -R X + B$$

$$X = -(L + D)^{-1}R X + (L + D)^{-1}B$$

FPI: $X^{(k+1)} = U_G X^{(k)} + V_G$, where $U_G = -(L+D)^{-1}R$ and $V_G = (L+D)^{-1}B$

© Certik

Sufficient conditions (on matrix A) for convergence of GS and Jac. methods:

- Let A be strictly diagonally dominant. Then both Jacobi and Gauss-Seidel methods converge for any $X^{(0)}$. ([2] Th. 4.9)
- Let A be symmetric positive definite. Then Gauss-Seidel method converges for any X⁽⁰⁾. (see [2] Th. 4.10 – G-S is a special case of SOR for ω = 1)

References

- [1] Tobias von Petersdorff: Contraction mapping theorem http://terpconnect.umd.edu/~petersd/666/fixedpoint.pdf
- [2] Y. Saad: Iterative methods for sparse linear systems http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf