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Fixed point iterations

The goal: find the solution of a fixed point equation
X =G(X), where X € R", G: R" - R"
The method: choose X then for k =0,1,2,... compute
X (k+1) — G(X(k))
Example: Consider the following system of nonlinear equations
ry = 1+40.2sin(z; — 2x9)
Ty = Vrit+ay+4
We have

T g1(x1, x9) 14 0.2 sin(z; — 2x9)
X = , G(X) = =
) g2(1, T2) VI + 1+ 4

Theorem 1 — contraction mapping theorem:

Let D C R™, D be closed, G : D — R"™. Assume
1. if X € D, then G(X) € D
2. the mapping G is a contraction on D: there exists ¢ < 1 such that

IG(X) -G <qlX-Y] VX, YeD (1)

Then

e there exists a unique X* € D such that X* = G(X*) and the fixed point iterations
converge to X* for any choice of X € D,

e X gatisfies the a-priori error estimate | X®) — X*|| < % | XD — X O
and the a-posteriori error estimate || X® — X*|| < i | X® — X k=1
Proof: see [1]

Note: The norm || .|| in Theorem 1 can be any vector norm (however, the same in both
the assumptions and the proposition).

Theorem 2 — the contraction property:

Let D C R", D be convex, G : D — R" has continuous partial derivatives %
J
in D. Assume there exists ¢ < 1 such that the matrix norm of the Jacobian

|IG'(X)]| < q, VX € D. Then G is a contraction in D and satisfies (1).
Proof: see [1]
Note: The norm || .|| in Theorem 2 can be any matrix norm consistent with the vector

norm in (1).
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Example continued — the Jacobi matrix

ofi Ofi

Oz, Ozy 0.2 cos(xy —2xy)  —0.4 cos(zy — 213)
G'(X) = = ) )

% % 2Vz1tza+4 2Vz1tza+4

81'1 (91‘2

is continuous on Q = {X € R? : 21 > —3, x5 > —1} and Q is convex.

Let us try the row norm first, because the computation seems to be the simplest:
|G'(X)|| o = max(|0.2 cos(x;—2x2)|+|—0.4 cos(z1—2x2)|, 2 |2\/$1+W ) < max(0.6, \/Lg) =
= 0.6. Assumptions of Theorem 2 hold, so GG is a contraction on €.

Choose D = {X € R?: 11 > 0,25 > 0} C Q. Then D is closed, G(D) C D and according
to Theorem 1, there exists a unique solution in D and FPI converge for any X(©® € D.

Starting at the origin, we have (rounded to 4 decimal places)
X0 _ H (1) _ H Y@ _ {0-9718], X _ [1'1943} _ x00) — x(n.

0 2.6458 2.8333
3.7-107°
-1.9-107%| -

Fixed point iterations for linear systems

so we stop and verify the result:  X®) — G(X®) =

Motivation

Typical matrix resulting from discretization of differential equations is sparse.
Example — discretization of Poisson equation in 2D square domain using finite differences
(11 x 11 grid, zero Dirichlet boundary condition):

0
%, T
*
*
*,
%,
*,

s,
e kY
wf % S
* *,
*, *x,
%, e

— a banded matrix 81 x 81, the bandwidth h = 10.
Consider n x n matrix with bandwidth h = ¢-n (¢ &~ 0.12 in our example).
For n = 10%: 5 nonzero diagonals represent approximately 5n = 5 - 10° nonzeros

2

Gauss elimination fills in the whole band — approx. h-n = c¢-n? = ¢-10'? ~ 10" nonzeros

— about 2 - 10*-times more computer memory is needed!
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Fixed point iterations for X =UX +V

Assume G(X) = UX +V, where U is a n x n matrix, V € R", so the fixed point equation
now represents a system of linear equations X = UX + V:

T1 = un®+ upls+ -+ Upd, U1
o = U211 + U222 + -+ UonTn + (%)
Tp = Up1T1 + Up2To + -+ Upp®py + Uy -

Under which assumptions the convergence of the fixed point iterations
Xt — g x® Ly
is guaranteed on R" 7

From properties of any norm on R" and its consistent matrix norm,
IG(X) =G| = [UX+V - UY +V)|| = [UX -UY|| = [UX =Y)[| < [U][ | X =Y
holds V X, Y € R", so the theorem follows:

Theorem 3 — sufficient condition for convergence of FPI:

If there exists a matrix norm such that ||U]| < 1,
then the mapping G(X) = UX + V is a contraction on R".

Proof: above

Now from Theorem 1 it follows that fixed point iterations X **1) = U X*) + V' converge
to the (unique) fixed point X* for any choice of X, Moreover, both a-priori and a-
posterirori error estimates hold with choice of ¢ = ||U]| < 1 (provided the matrix norm
and the vector norms are consistent).

What can be said about convergence of FPL, if there is no norm found for which ||U|| < 17

Analysis of an error

Let e®) = X — X* be an error in k-th iteration of FPI. Then

e =Xk - x* = (UXFD V) (UX*+V)=U(X* D - X*) =Uelh
e — [Jelk—1) — [126(k=2) — ... = [Jke(0)

Theorem 4 — necessary and sufficient condition for convergence of FPI:

The iteration process X **t1) = U X*) 4V converges to the fixed point X* for any choice
of X if and only if p(U) < 1.
Proof: follows from the analysis of an error above and from the property

Uk -0 < pU) <1

(see [2], Th. 1.10)
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Methods for solving AX = B based on fixed point iterations
The idea: transform AX = B to X =UX 4+ V and use the fixed point iterations.

Richardson method - the most straightforward method:
AX = B
0 = B—-AX
0 = a(B-AX), a#0
X = X+a(B—-AX)
X = I-aA)X+aB

FPI: XD = U X® +V | where U=1—aA and V =aB

Sufficient conditions (on matrix A) for convergence:

e Let A be symmetric positive definite (or sym. negative definite).
Then there exists a € R such that Richardson method converges.

Proof: Let \; be the eigenvalues of A, assume real, \j < Ay < --- < A,

Then p; =1 — a \; are eigenvalues of U and
pU)<1l & —I<l—al<1l & a)\<2and0<al.

The first inequality can always be satisfied for some «,
the second inequality can be satisfied only if all \;’s have the same sign.

Jacobi and Gauss-Seidel methods

Decompose given matrix A as A = L+ D + R, where D is a diagonal matrix, L is a lower
triangular and R is an upper triangular matrix. Assume that A has no zero elements on
diagonal, so that inverse D~! of D exists and also (L + D)~! exists.

Jacobi method

AX = B
(L+D+R)X = B
DX = —(L+R)X+B
X = -D'(L+RX+D'B

FPL: XD = ; X® + vV, where Uy = -D" L+ R) and V; =D"'B

Gauss-Seidel method

AX = B
(L+D+R)X = B
(L+D)X = —RX+B
X = —(L+D)'RX+(L+D)'B

FPL: X+ = Uy X® + Vi, where Ug = —(L+ D)™'R and Vg = (L+D)"'B
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Sufficient conditions (on matrix A) for convergence of GS and Jac. methods:

e Let A be strictly diagonally dominant.
Then both Jacobi and Gauss-Seidel methods converge for any X(©. ([2] Th. 4.9)

e Let A be symmetric positive definite.
Then Gauss-Seidel method converges for any X (.
(see [2] Th. 4.10 — G-S is a special case of SOR for w = 1)
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