Fixed point iterations for real functions

Motivation example: the logistic map – a very simple model of evolution of a population $x_{n+1} = r x_n (1 - x_n)$, where x_n is a number in < 0, 1 >– x_n represents the ratio of existing population to the maximum possible one, at *n*-th year

- r is a parameter of the model (0 < r < 4, so that if $x_n \in <0, 1 >$, then $x_{n+1} \in <0, 1 >$)

Question 1: Does there exist a *fixed point* x^* that solves the *logistic equation*

$$x^* = r x^* (1 - x^*)$$
?

 $-x^*$ represents some steady state, or equilibrium

The graphical solution:

Question 2: Does the logistic map (the "evolution") converge to a fixed point?

This is a special example of a more general formulation that will be discussed in this text.

Fixed point iterations

The goal: find the solution of a fixed point equation

x = g(x), where $x \in R$, $g : R \to R$.

Fixed point iterations (fpi): choose x_0 , then for k = 0, 1, 2, ... compute $x_{k+1} = g(x_k)$

Example 1: $g(x) = 0.2 x^2 + 1$, use $x_0 = 0.2$ and precision up to 4 decimal places $x_1 = g(x_0) = 0.2 x_0^2 + 1 = 0.2 \cdot 0.2^2 + 1 = 0.0080 + 1 = 1.0080$ $x_2 = g(x_1) = 0.2 x_1^2 + 1 = 0.2 \cdot 1.0080^2 + 1 = 1.2032$ $x_3 = g(x_2) = 0.2 x_2^2 + 1 = 0.2 \cdot 1.2032^2 + 1 = 1.2895$ $x_4 = 0.2 x_3^2 + 1 = 0.2 \cdot 1.2895^2 + 1 = 1.3326$... $x_{13} = 0.2 x_{12}^2 + 1 = 1.3818$ $x_{14} = 0.2 x_{13}^2 + 1 = 1.3819$ $x_{15} = 0.2 x_{14}^2 + 1 = \underbrace{0.2 \cdot 1.3819^2 + 1}_{g(1.3819)} = 1.3819$

 $g(1.3819) = 1.3819 \implies x = g(x)$ holds with accuracy up to 4 decimal places

Figure 1: Graphical illustration of iterations $x_{k+1} = g(x_k)$: black: $y = g(x) = 0.2 x^2 + 1$, blue: y = x.

Graphical solution – the algorithm:

- choose x_0 and set $P_0 = [x_0, x_0]$
- for k = 0, 1, 2, ..., repeat

1. more vertically to the curve y = g(x): set $Q_k = [x_k, g(x_k)]$ and $x_{k+1} = g(x_k)$

2. move horizontally to the line y = x: set $P_{k+1} = [x_{k+1}, x_{k+1}]$

until $|x_{k+1} - x_k| <$ some given precision

The resulting broken line P_0 , Q_0 , P_1 , Q_1 , ..., P_k , Q_k ... (red, dashed) converges to the graphical solution.

Question: under which assumptions fpi converge (i.e. the loop in the algorithm above is finite)? Example 2: $g(x) = 0.2x^2 + 1$ as in ex. 1; use $x_0 = 3.4$ (below left) and then $x_0 = 3.8$ (below right)

Figure 2: Ex. 2 – convergent staircase, to the left solution (left), divergent staircase (right). **Example 3**: $g(x) = \cos x$, use $x_0 = 0.4$ (below left) **Example 4**: $g(x) = -1.4 (x - 2) + 0.8 \cos x + 20$, use $x_0 = 8.9$ (below right)

Figure 3: Left: ex. 3 – spiral inwards (convergent). Right: ex. 4 – spiral outwards (divergent).

Observations:

- g(x) is increasing \Rightarrow staircase (ex. 1, 2, Figures 1, 2), g(x) is decreasing \Rightarrow spiral (ex. 3, 4, Figure 3).
- the slope of g(x) is small \Rightarrow fpi converge (ex. 1, 2, 3, left figures), the slope of g(x) is large, steep \Rightarrow fpi diverge (ex. 2, 4, right figures) the treshold $\approx 45^{\circ}$

Theorem 1 – contraction mapping theorem in R:

Let $D \subset R$, D be closed, let $g: D \to R$ be a real function. Assume

- 1. if $x \in D$, then $g(x) \in D$
- 2. the function g is a contraction on D: there exists a number q < 1 such that

$$|g(x) - g(y)| \le q \cdot |x - y| \quad \forall \ x, y \in D$$

$$\tag{1}$$

Then

- there exists unique $x^* \in D$ such that $x^* = g(x^*)$ and the fixed point iterations converge to x^* for any choice of $x_0 \in D$,
- x_k satisfies the a-priori error estimate $|x_k x^*| \le \frac{q^k}{1-q} |x_1 x_0|$ and the a-posteriori error estimate $|x_k - x^*| \le \frac{q}{1-q} |x_k - x_{k-1}|$.

Proof: see [1]

Theorem 2 – the sufficient condition for the contraction property in R:

Let g(x) be a differentiable function on interval $I \subset R$, such that $|g'(x)| \le q < 1 \ \forall x \in I$. Then g is a contraction in I and satisfies (1), i.e. $|g(x) - g(y)| \le q \cdot |x - y| \quad \forall x, y \in I$.

Proof: from Taylor's expansion for function g(x), we have $\forall x, y \in I$:

$$g(y) = g(x) + g'(\xi) \cdot (x - y) , \text{ where } \xi \in (x, y)$$

$$g(y) - g(x) = g'(\xi) \cdot (x - y)$$

$$|g(x) - g(y)| = |g'(\xi)| \cdot |x - y| \le q \cdot |x - y|$$

Fixed point iterations for general equation f(x) = 0

Transform the equation to the previous form:

$$0 = f(x) / \cdot \alpha$$

$$0 = \alpha f(x)$$

$$x = \underbrace{x + \alpha f(x)}_{g(x)}$$

The coefficient α has to be chosen so that $g(x) = x + \alpha f(x)$ is a contraction.

Example 5: solve numerically $2 \arctan x + \log x = 0$.

The function $f(x) = 2 \arctan x + \log x$ is defined for $x \in (0, \infty)$, values of f(x) are growing from $-\infty$ to ∞ , so the equation has unique solution x^* . In this case, the solution can be easily located to, say, $x^* \in (0.3, 1)$, as f(0.3) < 0 and f(1) > 0.

The function f(x) is differentiable – we will ty to find α so that the assumptions of Theorem 2 hold: $|g'(x)| = |1 + \alpha f'(x)| \le q < 1$ for $x \in I = (0.3, 1)$ and $f(I) \subset I$.

Let us use some guesswork: f'(x) > 0, so α has to be some negative number, small enough so that $1 + \alpha f'(x) > -1$. Choose $x_0 = 1$ and examine some values of α . We can check that values $\alpha = -0.1$, or $\alpha = -0.2$, or $\alpha = -0.3$ work perfectly ($x^* \approx 0.438$ after few iterations), value $\alpha = -0.4$ is not so good and for $\alpha < -0.5$ the fpi method does not converge.

References

[1] Tobias von Petersdorff: Contraction mapping theorem http://terpconnect.umd.edu/~petersd/666/fixedpoint.pdf