Fixed point iterations for real functions

Motivation example: the logistic map - a very simple model of evolution of a population $x_{n+1}=r x_{n}\left(1-x_{n}\right)$, where x_{n} is a number in $\langle 0,1\rangle$
$-x_{n}$ represents the ratio of existing population to the maximum possible one, at n-th year $-r$ is a parameter of the model $\left(0<r<4\right.$, so that if $x_{n} \in<0,1>$, then $\left.x_{n+1} \in<0,1>\right)$

Question 1: Does there exist a fixed point x^{*} that solves the logistic equation $x^{*}=r x^{*}\left(1-x^{*}\right)$?

- x^{*} represents some steady state, or equilibrium

The graphical solution:

Question 2: Does the logistic map (the "evolution") converge to a fixed point?

This is a special example of a more general formulation that will be discussed in this text.

Fixed point iterations

The goal: find the solution of a fixed point equation
$x=g(x), \quad$ where $x \in R, g: R \rightarrow R$.
Fixed point iterations (fpi): choose x_{0}, then for $k=0,1,2, \ldots$ compute
$x_{k+1}=g\left(x_{k}\right)$
Example 1: $\quad g(x)=0.2 x^{2}+1, \quad$ use $x_{0}=0.2$ and precision up to 4 decimal places

$$
\begin{aligned}
& x_{1}=g\left(x_{0}\right)=0.2 x_{0}{ }^{2}+1=0.2 \cdot 0.2^{2}+1=0.0080+1=1.0080 \\
& x_{2}=g\left(x_{1}\right)=0.2 x_{1}^{2}+1=0.2 \cdot 1.0080^{2}+1=1.2032 \\
& x_{3}=g\left(x_{2}\right)=0.2 x_{2}^{2}+1=0.2 \cdot 1.2032^{2}+1=1.2895 \\
& x_{4}=0.2 x_{3}^{2}+1=0.2 \cdot 1.2895^{2}+1=1.3326
\end{aligned}
$$

$$
x_{13}=0.2 x_{12}^{2}+1=1.3818
$$

$$
x_{14}=0.2 x_{13}^{2}+1=1.3819
$$

$$
x_{15}=0.2 x_{14}^{2}+1=\underbrace{0.2 \cdot 1.3819^{2}+1}_{g(1.3819)}=1.3819
$$

$$
g(1.3819)=1.3819 \quad \Rightarrow \quad x=g(x) \text { holds with accuracy up to } 4 \text { decimal places }
$$

Figure 1: Graphical illustration of iterations $x_{k+1}=g\left(x_{k}\right)$: black: $y=g(x)=0.2 x^{2}+1$, blue: $y=x$.
Graphical solution - the algorithm:

- choose x_{0} and set $\mathrm{P}_{0}=\left[x_{0}, x_{0}\right]$
- for $k=0,1,2, \ldots$, repeat

1. move vertically to the curve $y=g(x)$: set $\mathrm{Q}_{k}=\left[x_{k}, g\left(x_{k}\right)\right]$ and $x_{k+1}=g\left(x_{k}\right)$
2. move horizontally to the line $y=x$: set $\mathrm{P}_{k+1}=\left[x_{k+1}, x_{k+1}\right]$
until $\left|x_{k+1}-x_{k}\right|<$ some given precision
The resulting broken line $\mathrm{P}_{0}, \mathrm{Q}_{0}, \mathrm{P}_{1}, \mathrm{Q}_{1}, \ldots \mathrm{P}_{k}, \mathrm{Q}_{k} \ldots$ (red, dashed) converges to the graphical solution.

Question: under which assumptions fpi converge (i.e. the loop in the algorithm above is finite)?
Example 2: $g(x)=0.2 x^{2}+1$ as in ex. 1; use $x_{0}=3.4$ (below left) and then $x_{0}=3.8$ (below right)

Figure 2: Ex. 2 - convergent staircase, to the left solution (left), divergent staircase (right).
Example 3: $\quad g(x)=\cos x, \quad$ use $x_{0}=0.4$ (below left)
Example 4: $\quad g(x)=-1.4(x-2)+0.8 \cos x+20, \quad$ use $x_{0}=8.9$ (below right)

Figure 3: Left: ex. 3 - spiral inwards (convergent). Right: ex. 4 - spiral outwards (divergent).

Observations:

- $g(x)$ is increasing \Rightarrow staircase (ex. 1, 2, Figures 1, 2), $g(x)$ is decreasing \Rightarrow spiral (ex. 3, 4, Figure 3).
- the slope of $g(x)$ is small \Rightarrow fpi converge (ex. 1, 2, 3, left figures), the slope of $g(x)$ is large, steep \Rightarrow fpi diverge (ex. 2, 4, right figures) the treshold $\approx 45^{\circ}$

Theorem 1 - contraction mapping theorem in R :

Let $D \subset R, D$ be closed, let $g: D \rightarrow R$ be a real function. Assume

1. if $x \in D$, then $g(x) \in D$
2. the function g is a contraction on D : there exists a number $q<1$ such that

$$
\begin{equation*}
|g(x)-g(y)| \leq q \cdot|x-y| \quad \forall x, y \in D \tag{1}
\end{equation*}
$$

Then

- there exists unique $x^{*} \in D$ such that $x^{*}=g\left(x^{*}\right)$ and the fixed point iterations converge to x^{*} for any choice of $x_{0} \in D$,
- x_{k} satisfies the a-priori error estimate $\left|x_{k}-x^{*}\right| \leq \frac{q^{k}}{1-q}\left|x_{1}-x_{0}\right|$ and the a-posteriori error estimate $\left|x_{k}-x^{*}\right| \leq \frac{q}{1-q}\left|x_{k}-x_{k-1}\right|$.

Proof: see [1]

Theorem 2 - the sufficient condition for the contraction property in R :
Let $g(x)$ be a differentiable function on interval $I \subset R$, such that $\left|g^{\prime}(x)\right| \leq q<1 \forall x \in I$.
Then g is a contraction in I and satisfies (1), i.e. $|g(x)-g(y)| \leq q \cdot|x-y| \quad \forall x, y \in I$.
Proof: from Taylor's expansion for function $g(x)$, we have $\forall x, y \in I$:

$$
\begin{aligned}
g(y) & =g(x)+g^{\prime}(\xi) \cdot(x-y), \quad \text { where } \xi \in(x, y) \\
g(y)-g(x) & =g^{\prime}(\xi) \cdot(x-y) \\
|g(x)-g(y)| & =\left|g^{\prime}(\xi)\right| \cdot|x-y| \leq q \cdot|x-y|
\end{aligned}
$$

Fixed point iterations for general equation $f(x)=0$

Transform the equation to the previous form:

$$
\begin{aligned}
0 & =f(x) \quad / \cdot \alpha \\
0 & =\alpha f(x) \\
x & =\underbrace{x+\alpha f(x)}_{g(x)}
\end{aligned}
$$

The coefficient α has to be chosen so that $g(x)=x+\alpha f(x)$ is a contraction.

Example 5: solve numerically $2 \operatorname{arctg} x+\log x=0$.
The function $f(x)=2 \operatorname{arctg} x+\log x$ is defined for $x \in(0, \infty)$, values of $f(x)$ are growing from $-\infty$ to ∞, so the equation has unique solution x^{*}. In this case, the solution can be easily located to, say, $x^{*} \in(0.3,1)$, as $f(0.3)<0$ and $f(1)>0$.
The function $f(x)$ is differentiable - we will ty to find α so that the assumptions of Theorem 2 hold:
$\left|g^{\prime}(x)\right|=\left|1+\alpha f^{\prime}(x)\right| \leq q<1$ for $x \in I=(0.3,1)$ and $f(I) \subset I$.
Let us use some guesswork: $f^{\prime}(x)>0$, so α has to be some negative number, small enough so that $1+\alpha f^{\prime}(x)>-1$. Choose $x_{0}=1$ and examine some values of α. We can check that values $\alpha=-0.1$, or $\alpha=-0.2$, or $\alpha=-0.3$ work perfectly ($x^{*} \approx 0.438$ after few iterations), value $\alpha=-0.4$ is not so good and for $\alpha<-0.5$ the fpi method does not converge.

References

[1] Tobias von Petersdorff: Contraction mapping theorem http://terpconnect.umd.edu/~petersd/666/fixedpoint.pdf

