Method of (Steepest) Gradient Descent

Theorem: Suppose A is a symmetric and positive definite ($s p d$) matrix, b is a vector and $J(x)$ is the quadratic functional $J(x)=\frac{1}{2} x^{T} A x-x^{T} b$.
Then $\quad A \bar{x}=b \quad \Longleftrightarrow J(\bar{x})<J(x) \quad \forall x \neq \bar{x}$.
This Theorem says that the solution of a linear system $A x=b$ with spd matrix can be found by minimizing the quadratic functional $J(x)$. To achieve this, gradient methods can be used. The most illustrative method of this class is the Method of Gradient Descent, sometimes also called Method of Steepest Descent.

Method of Steepest Descent
 with exact line search for a quadratic function of multiple variables

The main idea: Start at some point x_{0}, find the direction of the steepest descent of the value of $J(x)$ and move in that direction as long as the value of $J(x)$ descends. At this point, find the new direction of the steepest descent and repeat the whole process.
Note: a direction of the steepest descent of a function at a given point is the direction opposite to its gradient at that point. The gradient is perpendicular to a contour line passing through the given point. See illustration in Figure 1.

Gradient of a quadratic function of multiple variables

$J(x)=\frac{1}{2} x^{T} A x-x^{T} b=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}-\sum_{i=1}^{n} b_{i} x_{i}$
$\frac{\partial J(x)}{\partial x_{k}}=\sum_{i=1}^{n} a_{k i} x_{i}-b_{k} x_{k} \quad \Rightarrow \quad \operatorname{grad}(J)=A x-b$.
The direction opposite to the gradient of $J(x)$ is equal to the residual

$$
r=b-A x \text { of the system } A x=b .
$$

Exact line search for a quadratic function

Assume a point $x_{0} \in R^{n}$ and a vector $v \in R^{n}$ are given. Then the equation

$$
x=x_{0}+\alpha v, \quad \alpha \in R,
$$

represents a line going through the point x_{0} in the direction of v.
The problem: find the minimum of the functional $J(x)$ on that line, that is find the minimum of the function $f(\alpha) \equiv J\left(x_{0}+\alpha v\right)$ of one real variable α :

$$
\begin{aligned}
f(\alpha) & =J\left(x_{0}+\alpha v\right)=\frac{1}{2}\left(x_{0}+\alpha v\right)^{T} A\left(x_{0}+\alpha v\right)-\left(x_{0}+\alpha v\right)^{T} b= \\
& =\frac{1}{2}\left[x_{0}^{T} A x_{0}+\alpha x_{0}^{T} A v+\alpha v^{T} A x_{0}+\alpha^{2} v^{T} A v\right]-x_{0}^{T} b-\alpha v^{T} b= \\
& =\frac{1}{2}\left[x_{0}^{T} A x_{0}+2 \alpha v^{T} A x_{0}+\alpha^{2} v^{T} A v\right]-x_{0}^{T} b-\alpha v^{T} b
\end{aligned}
$$

- the last equality holds due to symmetry of A.

$$
f^{\prime}(\alpha)=v^{T} A x_{0}+\alpha v^{T} A v-v^{T} b=0 \Longleftrightarrow \alpha=\frac{v^{T}\left(b-A x_{0}\right)}{v^{T} A v}
$$

The algorithm of Method of Steepest Descent:

Choose $x^{(0)}$. For $k=0,1,2, \ldots$ compute

1. $r^{(k)}=b-A x^{(k)}$
2. $\alpha_{k}=\left(r^{(k)}\right)^{T} r^{(k)} /\left(r^{(k)}\right)^{T} A r^{(k)}$
3. $x^{(k+1)}=x^{(k)}+\alpha_{k} r^{(k)}$
until $\left\|r^{(k)}\right\|<\varepsilon$ for some small ε of your choice.

Figure 1: The ellipses represent contour lines of a quadratic functional. The polygonal line starting at the big bullet (on the outermost ellipse) is a path to the lower values of the functional computed by method of steepest descent.

Example

Consider a linear system $A x=b$, where

$$
A=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right], \quad b=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]
$$

a) Can the method of steepest descent be used for solving this system?
b) If yes, compute first three iterations by this method, starting from $x^{(0)}=(0,0,0)^{T}$.

Solution:

a) Let us verify the sufficient condition for using the method, i.e. that matrix A is $s p d$. A is symmetric, so we have to check positive definitness:
A is strictly diagonally dominant with positive values on the main diagonal $\Rightarrow A$ is spd.

Another (more laborious) way how to prove positive definitness:
$\operatorname{det}(3)=3>0 \quad, \operatorname{det}\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]=8>0 \quad, \operatorname{det}\left[\begin{array}{rrr}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]=20>0$
All leading principal minors are positive $\Rightarrow A$ is positive definite.
Conclusion: the method of steepest descent can be used to solve this system.
b) $k=0$:
1.

$$
r^{(0)}=b-A x^{(0)}=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]-\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]
$$

2.

$$
\begin{gathered}
\left(r^{(0)}\right)^{T} r^{(0)}=\left[\begin{array}{lll}
-1 & 7 & -7
\end{array}\right]\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]=1+49+49=99 \\
\left(r^{(0)}\right)^{T} A r^{(0)}=\left[\begin{array}{lll}
-1 & 7 & -7
\end{array}\right]\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]=\left[\begin{array}{lll}
-1 & 7 & -7
\end{array}\right]\left[\begin{array}{r}
-17 \\
29 \\
-29
\end{array}\right]=423 \\
\alpha_{0}=\left(r^{(0)}\right)^{T} r^{(0)} /\left(r^{(0)}\right)^{T} A r^{(0)}=99 / 423=0.2340
\end{gathered}
$$

3.

$$
\mathbf{x}^{(\mathbf{1})}=x^{(0)}+\alpha_{0} r^{(0)}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+0.2340\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]=\left[\begin{array}{r}
-0.2340 \\
1.6383 \\
-1.6383
\end{array}\right]
$$

$\mathrm{k}=1$:
1.

$$
r^{(1)}=b-A x^{(1)}=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]-\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
-0.2340 \\
1.6383 \\
-1.6383
\end{array}\right]=\left[\begin{array}{r}
2.9787 \\
0.2128 \\
-0.2128
\end{array}\right]
$$

2.

$$
\begin{gathered}
\left(r^{(1)}\right)^{T} r^{(1)}=\left[\begin{array}{lll}
2.9787 & 0.2128 & -0.2128
\end{array}\right]\left[\begin{array}{r}
2.9787 \\
0.2128 \\
-0.2128
\end{array}\right]=8.9633 \\
\left(r^{(1)}\right)^{T} A r^{(1)}=\left[\begin{array}{lll}
2.9787 & 0.2128 & -0.2128
\end{array}\right]\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
2.9787 \\
0.2128 \\
-0.2128
\end{array}\right]= \\
=\left[\begin{array}{lll}
2.9787 & 0.2128 & -0.2128
\end{array}\right]\left[\begin{array}{r}
8.5106 \\
-2.1277 \\
2.1277
\end{array}\right]=24.4455 \\
\alpha_{1}=\left(r^{(1)}\right)^{T} r^{(1)} /\left(r^{(1)}\right)^{T} A r^{(1)}=8.9633 / 24.4455=0.3667
\end{gathered}
$$

3.

$$
\mathbf{x}^{(\mathbf{2})}=x^{(1)}+\alpha_{1} r^{(1)}=\left[\begin{array}{r}
-0.2340 \\
1.6383 \\
-1.6383
\end{array}\right]+0.3667\left[\begin{array}{r}
2.9787 \\
0.2128 \\
-0.2128
\end{array}\right]=\left[\begin{array}{r}
0.8582 \\
1.7163 \\
-1.7163
\end{array}\right]
$$

$\mathrm{k}=\mathbf{2}:$
1.

$$
r^{(2)}=b-A x^{(2)}=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]-\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
0.8582 \\
1.7163 \\
-1.7163
\end{array}\right]=\left[\begin{array}{r}
-0.1418 \\
0.9929 \\
-0.9929
\end{array}\right]
$$

2.

$$
\begin{gathered}
\left(r^{(2)}\right)^{T} r^{(2)}=\left[\begin{array}{lll}
-0.1418 & 0.9929 & -0.9929
\end{array}\right]\left[\begin{array}{r}
-0.1418 \\
0.9929 \\
-0.9929
\end{array}\right]=1.9919 \\
\left(r^{(2)}\right)^{T} A r^{(2)}=\left[\begin{array}{lll}
-0.1418 & 0.9929 & -0.9929
\end{array}\right]\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
-0.1418 \\
0.9929 \\
-0.9929
\end{array}\right]= \\
=\left[\begin{array}{lll}
-0.1418 & 0.9929 & -0.9929
\end{array}\right]\left[\begin{array}{r}
-2.4113 \\
4.1135 \\
-4.1135
\end{array}\right]=8.5106
\end{gathered}
$$

$$
\alpha_{2}=\left(r^{(2)}\right)^{T} r^{(2)} /\left(r^{(2)}\right)^{T} A r^{(2)}=1.9919 / 8.5106=0.2340
$$

3.

$$
\begin{gathered}
\mathbf{x}^{(3)}=x^{(2)}+\alpha_{2} r^{(2)}=\left[\begin{array}{r}
0.8582 \\
1.7163 \\
-1.7163
\end{array}\right]+0.2340\left[\begin{array}{r}
-0.1418 \\
0.9929 \\
-0.9929
\end{array}\right]=\left[\begin{array}{r}
0.8250 \\
1.9487 \\
-1.9487
\end{array}\right] \\
r^{(3)}=b-A x^{(3)}=\left[\begin{array}{r}
-1 \\
7 \\
-7
\end{array}\right]-\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
0.8250 \\
1.9487 \\
-1.9487
\end{array}\right]=\left[\begin{array}{r}
0.4225 \\
0.0302 \\
-0.0302
\end{array}\right]
\end{gathered}
$$

The convergence is quite slow - the exact solution is $\bar{x}=(1,2,-2)^{T}$.

