Newton's method

The theory (excerpts from lectures)
The goal: find a solution of a system of nonlinear equations $\mathbf{F}(\mathbf{x})=\mathbf{0}$, where

$$
\mathbf{F}(\mathbf{x}): R^{n} \rightarrow R^{n}, \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right], \quad \mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots x_{n}\right) \\
\ldots \\
f_{n}\left(x_{1}, \ldots x_{n}\right)
\end{array}\right], \quad f_{i}: R^{n} \rightarrow R \text { differentiable. }
$$

The idea: for a given approximation $\widehat{\mathbf{x}}$ of the solution, linearize the equations around $\widehat{\mathbf{x}}$ and find a better approximation as the exact solution of these linearized equations. Repeat the process until convergence.

Derivation of the algorithm for $n=1$ - use Taylor polynomial of the first order:
$f(x) \approx f(\widehat{x})+f^{\prime}(\widehat{x}) \cdot(x-\widehat{x})$
Instead of the nonlinear equation $f(x)=0$, solve the linear one:
$\begin{aligned} & f(\widehat{x})+f^{\prime}(\widehat{x}) \cdot \underbrace{(x-\widehat{x})}_{d}=0 \Longleftrightarrow f^{\prime}(\widehat{x}) \cdot d=-f(\widehat{x}) \Rightarrow \quad d=-f(\widehat{x}) / f^{\prime}(\widehat{x}) \\ & \Rightarrow \quad x=\widehat{x}+d=\widehat{x}-f(\widehat{x}) / f^{\prime}(\widehat{x})\end{aligned}$

Derivation of the algorithm for $n=2$ (the generalization is straightforward):
$f_{1}(\mathbf{x}) \approx f_{1}(\widehat{\mathbf{x}})+\frac{\partial f_{1}}{\partial x_{1}}(\widehat{\mathbf{x}}) \cdot\left(x_{1}-\widehat{x}_{1}\right)+\frac{\partial f_{1}}{\partial x_{2}}(\widehat{\mathbf{x}}) \cdot\left(x_{2}-\widehat{x}_{2}\right)$
$f_{2}(\mathbf{x}) \approx f_{2}(\widehat{\mathbf{x}})+\frac{\partial f_{2}}{\partial x_{1}}(\widehat{\mathbf{x}}) \cdot\left(x_{1}-\widehat{x}_{1}\right)+\frac{\partial f_{2}}{\partial x_{2}}(\widehat{\mathbf{x}}) \cdot\left(x_{2}-\widehat{x}_{2}\right)$
Instead of the nonlinear system $f_{1}(\mathbf{x})=0$ and $f_{2}(\mathbf{x})=0$, solve the linear one:
$f_{1}(\widehat{\mathbf{x}})+\frac{\partial f_{1}}{\partial x_{1}}(\widehat{\mathbf{x}}) \cdot \underbrace{\left(x_{1}-\widehat{x}_{1}\right)}_{d_{1}}+\frac{\partial f_{1}}{\partial x_{2}}(\widehat{\mathbf{x}}) \cdot \underbrace{\left(x_{2}-\widehat{x}_{2}\right)}_{d_{2}}=0$
$f_{2}(\widehat{\mathbf{x}})+\frac{\partial f_{2}}{\partial x_{1}}(\widehat{\mathbf{x}}) \cdot \underbrace{\left(x_{1}-\widehat{x}_{1}\right)}_{d_{1}}+\frac{\partial f_{2}}{\partial x_{2}}(\widehat{\mathbf{x}}) \cdot \underbrace{\left(x_{2}-\widehat{x}_{2}\right)}_{d_{2}}=0$
which in a matrix form can be rewritten as $\quad \mathbf{F}^{\prime}(\widehat{\mathbf{x}}) \mathbf{d}=-\mathbf{F}(\widehat{\mathbf{x}}), \quad$ where $\mathbf{d}=\mathbf{x}-\widehat{\mathbf{x}}$:

$$
\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\widehat{\mathbf{x}}) & \frac{\partial f_{1}}{\partial x_{2}}(\widehat{\mathbf{x}}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\widehat{\mathbf{x}}) & \frac{\partial f_{2}}{\partial x_{2}}(\widehat{\mathbf{x}})
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
d_{2}
\end{array}\right]=-\left[\begin{array}{c}
f_{1}(\widehat{\mathbf{x}}) \\
f_{2}(\widehat{\mathbf{x}})
\end{array}\right]
$$

Algorithm of Newton's method

1. compute Jacobi matrix

$$
\mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

2. choose $\mathbf{x}^{(0)}$
3. repeat for $k=0,1,2, \ldots$
3.1 compute a vector $\mathbf{d}^{(k)}$ as the solution of the system

$$
\mathbf{F}^{\prime}\left(\mathbf{x}^{(k)}\right) \mathbf{d}^{(k)}=-\mathbf{F}\left(\mathbf{x}^{(k)}\right)
$$

3.2 set $\quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{d}^{(k)}$
until $\left\|\mathbf{F}\left(\mathbf{x}^{(k+1)}\right)\right\|<\varepsilon$ and $\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\|<\varepsilon$,
or $k>k_{\max }$ for some ε and $k_{\max }$ of your choice.
For all vectors $\mathbf{x}^{(k)}$, the matrix $\mathbf{F}^{\prime}\left(\mathbf{x}^{(k)}\right)$ has to be nonsingular, so that the system 3.1 has a unique solution. If for some k the matrix $\mathbf{F}^{\prime}\left(\mathbf{x}^{(k)}\right)$ happens to be singular, choose different vector $\mathbf{x}^{(0)}$ and start the process again.

Theorem - convergence of Newton's method:
Assume that

- \mathbf{F} is continuously differentiable twice in a domain $D \subset R^{n}$,
- there exists a solution $\mathbf{x}^{*} \in D$ of the system $\mathbf{F}(\mathbf{x})=\mathbf{0}$,
- $\mathbf{F}^{\prime}\left(\mathbf{x}^{*}\right)$ is nonsingular (i.e., invertible).

Then there exists a neighbourhood U_{δ} of \mathbf{x}^{*} such that Newton's method covnerges for any starting point $\mathbf{x}^{(0)} \in U_{\delta}$. Moreover, the convergence is quadratic: there exists a constant c such that

$$
\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\| \leq c\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|^{2} .
$$

In practice, however, we are not usually able to localize the solution \mathbf{x}^{*} with precision δ, we even do not know what δ is (i.e., how close to the solution the starting point $\mathbf{x}^{(0)}$ should be), and we do not know if $\mathbf{F}^{\prime}\left(\mathbf{x}^{*}\right)$ is invertible, either.
So, in practice, Newton's method is typically used in a "trial - error" way.

Note: Compare Newton's method speed of convergence with that of Fixed point iterations for $\mathbf{x}=\mathbf{G}(\mathbf{x})$:

$$
\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|=\left\|\mathbf{G}\left(\mathbf{x}^{(k)}\right)-\mathbf{G}\left(\mathbf{x}^{*}\right)\right\| \leq q\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\| .
$$

Example 1

Consider the following system of nonlinear equations:

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & =4 \\
x_{2} & =x_{1}^{3}+1
\end{aligned}
$$

a) Find the solution graphically.
b) Choose $\mathbf{x}^{(0)}=(1,2)^{T}$ and compute the first two iterations of Newton's method.
c) Can $\mathbf{x}^{(0)}$ be choosen as $\mathbf{x}^{(0)}=(1,-1 / 3)^{T}$? Give reasons for your answer.

The solution

a)

b) Transform the system to the vector notation

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-4 \\
x_{2}-x_{1}^{3}-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \equiv \mathbf{0}, \quad \text { where } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
$$

and compute the Jacobian matrix

$$
\mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
-3 x_{1}^{2} & 1
\end{array}\right]
$$

The first iteration of Newton's method:

- compute the vector $\mathbf{d}^{(0)}=\left(d_{1}^{(0)}, d_{2}^{(0)}\right)^{T}$ by solving the system $\mathbf{F}^{\prime}\left(\mathbf{x}^{(0)}\right) \mathbf{d}^{(0)}=-\mathbf{F}\left(\mathbf{x}^{(0)}\right)$:
substitution of $\mathbf{x}^{(0)}=(1,2)^{T}$ leads to

$$
\begin{gathered}
\mathbf{F}^{\prime}\left(\mathbf{x}^{(0)}\right)=\left[\begin{array}{cc}
2 \cdot 1 & 2 \cdot 2 \\
-3 \cdot 1^{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
-3 & 1
\end{array}\right] \\
\mathbf{F}\left(\mathbf{x}^{(0)}\right)=\left[\begin{array}{c}
1^{2}+2^{2}-4 \\
2-1^{3}-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gathered}
$$

now $\mathbf{d}^{(0)}$ is to be computed from the linear system

$$
\left[\begin{array}{cc}
2 & 4 \\
-3 & 1
\end{array}\right]\left[\begin{array}{c}
d_{1}^{(0)} \\
d_{2}^{(0)}
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow \mathbf{d}^{(0)}=\left[\begin{array}{c}
-1 / 14 \\
-3 / 14
\end{array}\right]
$$

- compute $\mathbf{x}^{(1)}$:

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}+\mathbf{d}^{(0)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 / 14 \\
-3 / 14
\end{array}\right]=\left[\begin{array}{l}
13 / 14 \\
25 / 14
\end{array}\right]=\left[\begin{array}{l}
0.9286 \\
1.7857
\end{array}\right]
$$

The second iteration of Newton's method:

- compute the vector $\mathbf{d}^{(1)}=\left(d_{1}^{(1)}, d_{2}^{(1)}\right)^{T}$ by solving the system $\mathbf{F}^{\prime}\left(\mathbf{x}^{(1)}\right) \mathbf{d}^{(1)}=-\mathbf{F}\left(\mathbf{x}^{(1)}\right)$:
substitution $\mathbf{x}^{(1)}=(13 / 14,25 / 14)^{T}$ leads to

$$
\begin{gathered}
\mathbf{F}^{\prime}\left(\mathbf{x}^{(1)}\right)=\left[\begin{array}{cc}
2 \cdot 13 / 14 & 2 \cdot 25 / 14 \\
-3 \cdot(13 / 14)^{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
13 / 7 & 25 / 7 \\
-507 / 196 & 1
\end{array}\right] \\
\mathbf{F}\left(\mathbf{x}^{(1)}\right)=\left[\begin{array}{c}
(13 / 14)^{2}+(25 / 14)^{2}-4 \\
25 / 14-(13 / 14)^{3}-1
\end{array}\right]=\left[\begin{array}{c}
5 / 98 \\
-41 / 2744
\end{array}\right]
\end{gathered}
$$

now $\mathbf{d}^{(1)}$ is to be computed from the linear system

$$
\begin{aligned}
& {\left[\begin{array}{cc}
13 / 7 & 25 / 7 \\
-507 / 196 & 1
\end{array}\right]\left[\begin{array}{c}
d_{1}^{(1)} \\
d_{2}^{(1)}
\end{array}\right] }=-\left[\begin{array}{c}
5 / 98 \\
-41 / 2744
\end{array}\right] \\
& \Rightarrow \mathbf{d}^{(1)}=\left[\begin{array}{c}
-105 / 11161 \\
-11 / 1171
\end{array}\right]=\left[\begin{array}{c}
-0.009408 \\
-0.009394
\end{array}\right]
\end{aligned}
$$

- compute $\mathbf{x}^{(2)}$:

$$
\mathbf{x}^{(2)}=\mathbf{x}^{(1)}+\mathbf{d}^{(1)}=\left[\begin{array}{c}
13 / 14 \\
25 / 14
\end{array}\right]+\left[\begin{array}{c}
-105 / 11161 \\
-11 / 1171
\end{array}\right]=\left[\begin{array}{c}
1319 / 1435 \\
4876 / 2745
\end{array}\right]=\left[\begin{array}{l}
0.9192 \\
1.7763
\end{array}\right]
$$

c) Compute $\mathbf{F}^{\prime}\left(\mathbf{x}^{(0)}\right)$:

$$
\mathbf{F}^{\prime}\left(\mathbf{x}^{(0)}\right)=\left[\begin{array}{cc}
2 \cdot 1 & 2 \cdot(-1 / 3) \\
-3 \cdot 1^{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 / 3 \\
-3 & 1
\end{array}\right]
$$

This matrix is singular (the rows are linearly dependent), so the equation at the item 3.1 of Newton's method does not have a unique solution. In this case the initial approximation $\mathbf{x}^{(0)}$ has to be chosen differently.

