Spectral norm and spectral radius

Example 1 - a general matrix with 2 different real eigenvalues

 image of the unit circle is an elipse$$
A=\left[\begin{array}{cc}
1.2 & 0.5 \\
2 & -1.5
\end{array}\right]
$$

$$
\begin{aligned}
& \lambda_{1}=1.53 \\
& \lambda_{2}=-1.83
\end{aligned}
$$

$\rho(A)=1.83,\|A\|_{2}=2.605$

Left: Unit circle (blue) and unit eigenvectors (red).
Right: Image of the unit circle and of the eigenvectors (blue and red, respectively).
Black dashed circle has radius $\rho(A)$. Green circle has radius $\|A\|_{2}$.
Unit circle is blue dashed.

Example 2 - symmetric matrix

eigenvalues are always real, eigenvectors are orthogonal and parallel to axes of the elipse

$$
A=\left[\begin{array}{rr}
3 & -1 \\
-1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
\lambda_{1} & =1.382 \\
\lambda_{2} & =3.618 \\
\rho(A) & =\|A\|_{2}=3.618
\end{aligned}
$$

