
ODE - boundary value problems ver. 29.3.2024

ODE - second-order boundary value problems

We want to find a solution y(x) of a linear, second-order, self-adjoint boundary value
problem with Dirichlet boundary condition on the interval ⟨a, b⟩:

−(p(x) y′(x))′ + q(x) y(x) = f(x) , y(a) = y0 , y(b) = yn , (1)

or its special simple case with p(x) ≡ 1:

−y′′(x) + q(x) y(x) = f(x) , y(a) = y0 , y(b) = yn . (2)

Existence and uniqueness of the (exact) solution

Sufficient conditions for existence of a unique solution of the problem (1):

� functions p(x), p′(x), q(x), f(x) are continuous on the interval ⟨a, b⟩, and

� p(x) > 0, q(x) ≥ 0 on ⟨a, b⟩

Numerical solution by the finite-difference method

Choose a suitable step size h, set n = b−a
h

and define n− 1 equidistant nodes inside
the interval ⟨a, b⟩: a = x0 < x1 < . . . xn = b, xi+1 − xi = h for all i = 0, 1, 2, . . . n− 1.
Denote by yi an approximate value of y(xi). Values y0 and yn are given by the boundary
conditions, remaining values yi for i = 1, 2, . . . n− 1 can be computed from a system
of linear equations

−pi− 1
2
yi−1 + (pi− 1

2
+ h2qi + pi+ 1

2
) yi − pi+ 1

2
yi+1 = h2fi (3)

using the notation qi = q(xi) , fi = f(xi) , pi± 1
2
= p(xi ± h

2
) .

Specially in the case (2), the formula (3) is simplified to

−yi−1 + (2 + h2qi) yi − yi+1 = h2fi . (4)

If p(x) > 0 and q(x) > 0 on ⟨a, b⟩, then the matrix of the system is strictly diagonal
dominant – so it is nonsingular and the system can be solved by Jacobi or Gauss-Seidel
iterative method.
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Inference of systems (3) or (4) from the equations (1) or (2), respectively

Let us start with the simple case (2). The equation (2) is expressed in every inner
node xi for i = 1, 2, . . . n− 1 as

−y′′(xi) + q(xi) y(xi) = f(xi) ,

then the second derivatives are approximated by the second central differences:

−y(xi−1)− 2y(xi) + y(xi+1)

h2
+O(h2) + q(xi) y(xi) = f(xi) .

Omitting the consistence error, using the approximate values yi instead of y(xi) and
notation qi = q(xi), fi = f(xi) leads to

−yi−1 − 2yi + yi+1

h2
+ qi yi = fi

and after multiplying by h2 and rearranging, the formula (4) is obtained.

Inference of the numerical formula (3) for the more general equation (1) is less
straightforward. Again, the first step is to express the equation in every inner
node xi for i = 1, 2, . . . n− 1:

−(p(xi) y
′(xi))

′ + q(xi) y(xi) = f(xi) . (5)

Then the first derivatives are approximated by central differences with h
2
, in two steps:

1. Denote z(x) = p(x) y′(x) and use the central difference: z′(xi) ≈ z(xi+h/2)−z(xi−h/2)
h

,

then the first term of equation (5) can be approximated as

−(p(xi) y
′(xi))

′ = −z′(xi) ≈ − 1
h
[ p(xi +

h
2
) y′(xi +

h
2
)− p(xi − h

2
) y′(xi − h

2
) ] =

= 1
h
[ pi− 1

2
y′(xi − h

2
)− pi+ 1

2
y′(xi +

h
2
) ] .

2. Use central differences at mid-points:

y′(xi +
h
2
) ≈ y(xi+h)−y(xi)

h
, y′(xi − h

2
) ≈ y(xi)−y(xi−h)

h
, then

−(p(xi) y
′(xi))

′ ≈ 1

h2
[−pi+ 1

2
y(xi+h)+(pi− 1

2
+pi+ 1

2
) y(xi)−pi− 1

2
y(xi−h) ] . (6)

System (3) is obtained by substituting (6) into (5), using yi ≈ y(xi) and rearranging.
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Problem 1

Consider the equation −(x2y′(x))′ +
x3

2 + x
y(x) = 4 + x

with boundary conditions y(−5) = −2, y(−3) = 2.

a) Prove the existence of a unique solution of the given problem.

b) Choose step size of h = 0.4 and using the finite difference method put together
the system of linear equations for computing an approximate solution at the
nodes of the mesh.

Solution

Using the notation of the general problem (1) we have

p(x) = x2 , q(x) =
x3

2 + x
, f(x) = 4 + x .

a) Verify the conditions sufficient for the existence of an unique solution of the problem:

� functions x2, 2x,
x3

2 + x
, 4 + x are continuous in the interval ⟨−5,−3⟩,

� x2 > 0,
x3

2 + x
≥ 0 in ⟨−5,−3⟩,

so there exists a unique solution of the given problem.

b) First of all, let us divide the interval with step size h = 0.4 (it has to be chosen so
that both endpoints of the interval are nodes of the mesh), compute coefficients needed
for assembling the system of equations and store them into Table 1:

p 1
2
= p(−4.8) = (−4.8)2 = 23.04

p1 1
2
= p(−4.4) = (−4.4)2 = 19.36

. . .

h2q1 = 0.42 · q(−4.6) = 0.16 · (−4.6)3

2−4.6
= 5.9899

h2q2 = 0.42 · q(−4.2) = 0.16 · (−4.2)3

2−4.2
= 5.3882

. . .

h2f1 = 0.42 · f(−4.6) = 0.16 · (4− 4.6) = −0.096

h2f2 = 0.42 · f(−4.2) = 0.16 · (4− 4.2) = −0.032
. . .
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i xi pi± 1
2

h2qi h2fi

-4.8 23.04
1 -4.6 5.9899 -0.096

-4.4 19.36
2 -4.2 5.3882 -0.032

-4.0 16.00
3 -3.8 4.8775 0.032

-3.6 12.96
4 -3.4 4.4919 0.096

-3.2 10.24

Table 1: Coefficients needed for assembling the system of equations for Problem 1.

Use the coefficitents for assembling 4 equations for 4 unknowns y1 až y4 :

the first equation (i = 1):

−23.04 y0 + (23.04 + 5.9899 + 19.36) y1 − 19.36 y2 = −0.096

substitute the boundary value y0 = −2 and move to the right hand side:

48.3899 y1 − 19.36 y2 = −0.096 + 23.04 · (−2) = −46.176

the second equation (i = 2):

−19.36 y1 + (19.36 + 5.3882 + 16.00) y2 − 16.00 y3 = −0.032

−19.36 y1 + 40.7482 y2 − 16.00 y3 = −0.032

the third equation (i = 3):

−16.00 y2 + (16.00 + 4.8775 + 12.96) y3 − 12.96 y4 = 0.032

−16.00 y2 + 33.8375 y3 − 12.96 y4 = 0.032

the fourth equation (i = 4):

−12.96 y3 + (12.96 + 4.4919 + 10.24) y4 − 10.24 y5 = 0.096

substitute the boundary value y5 = 2 and move to the right hand side:

−12.96 y3 + 27.6919 y4 = 0.096 + 10.24 · 2 = 20.576

Resulting system of equations in matrix notation:
48.3899 −19.36 0 0
−19.36 40.7482 −16.00 0

0 −16.00 33.8375 −12.96
0 0 −12.96 27.6919




y1
y2
y3
y4

 =


−46.176
−0.032
0.032
20.576


The solution of the system of equations is the vector

Y = (-1.1719, -0.5440, 0.0345, 0.7592)T

representing approximate values of the solution at inner nodes of the mesh, it means

approximate values of y(−4.6), y(−4.2), y(−3.8) and y(−3.4) .
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Problem 2 - a harmonic oscilator (damped oscillations)

Consider the equation y′′+2y′+ y = e−t with boundary conditions y(0) = 2, y(2) = 0.

Find numerically an approximate value of the solution y(0.2) at the time t = 0.2.

Solution

First of all, the given equation need to be transformed to the self-adjoint form (1).
This can be done by the following four steps:

� perform the differentiation of the first term of (1):

−p(x) y′′(x) − p′(x) y′(x) + q(x) y(x) = f(x) (7)

� multiply the given equation by −p(x) (variable t is now renamed to x):

−p(x) y′′(x) − 2 p(x) y′(x) − p(x) y(x) = −p(x) e−x (8)

� compare the coefficients of (7) and (8):

p′(x) = 2 p(x), q(x) = −p(x), f(x) = −p(x) e−x

� solve for p, q and f (hint: suppose p(x) = ecx, then p′(x) = c ecx = c p(x) ):

p(x) = e2x, q(x) = −e2x, f(x) = −e2x e−x = −ex

The self-adjoint form is −(e2ty′(t))′ − e2ty(t) = −et.

This problem does not comply with the conditions sufficient (not necessary) for the
existence of unique solution listed above, so it is not guaranteed that we obtain a
meaningful result when solving such equation numerically. Nevertheless, we try our
hand at the numerical solution of this illustrative problem.

Note: For this specific problem, however, we know there exists unique solution, as we
are able to solve it analytically – general solution of the equation is y = (c1 + c2 t +
0.5 t2) e−t and using the boundary conditions we have unique solution c1 = 2, c2 = −2.

In order to find approximate solution at t = 0.2, we have to compute approximate
solution on the whole interval. First divide the interval with the step size h = 0.2 (it
has to be chosen so that both endpoints of the interval are nodes of the mesh) and
prepare coefficients needed for assembling the system of equations into Table 2:

We have p(t) = e2t, q(t) = −e2t a f(t) = −et,

p 1
2
= p(0.1) = e0.2 = 1.2214

p1 1
2
= p(0.3) = e0.6 = 1.8221

. . .

h2q1 = 0.22 · q(0.2) = 0.04 · (−e0.4) = −0.0597

h2q2 = 0.22 · q(0.4) = 0.04 · (−e0.8) = −0.0890
. . .

h2f1 = 0.22 · f(0.2) = 0.04 · (−e0.2) = −0.0489

h2f2 = 0.22 · f(0.4) = 0.04 · (−e0.4) = −0.0597
. . .

5 © Certik



ODE - boundary value problems ver. 29.3.2024

i ti pi± 1
2

h2qi h2fi

0.1 1.2214
1 0.2 -0.0597 -0.0489

0.3 1.8221
2 0.4 -0.0890 -0.0597

0.5 2.7183
3 0.6 -0.1328 -0.0729

0.7 4.0552
4 0.8 -0.1981 -0.0890

0.9 6.0496
5 1.0 -0.2956 -0.1087

1.1 9.0250
6 1.2 -0.4409 -0.1328

1.3 13.4637
7 1.4 -0.6578 -0.1622

1.5 20.0855
8 1.6 -0.9813 -0.1981

1.7 29.9641
9 1.8 -1.4639 -0.2420

1.9 44.7012

Table 2: Coefficients needed for assembling the system of equations for Problem 2.

Now we use the prepared coefficients for assembling 9 equations for unknowns y1 to y9:

the first equation (for i = 1):

−1.2214 y0 + (1.2214−0.0597 + 1.8221) y1 − 1.8221 y2 = −0.0489

substitute the boundary value y0 = 2 and move the corresponding term to the rhs:

2.9838 y1 − 1.8221 y2 = −0.0489 + 2 · 1.2214 = 2.3939

the second equation (for i = 2):

−1.8221 y1 + (1.8221−0.0890 + 2.7183) y2 − 2.7183 y3 = −0.0597

−1.8221 y1 + 4.4514 y2 − 2.7183 y3 = −0.0597

. . . etc.

the last equation (for i = 9):

−29.9641 y8 + (29.9641− 1.4639 + 44.7012) y9 − 44.7012 y10 = −0.2420

substitute the boundary value y10 = 0 :

−29.9641 y8 + 73.2014 y9 = −0.2420

The solution of the system of equations is a vector

Y = (1.3259, 0.8574, 0.5373, 0.3230, 0.1836, 0.0961, 0.0442, 0.0161, 0.0033)T .

An approximate value of y(0.2) is y1 = 1.3259

(for comparison: exact value of y(0.2) is 1.3263).
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