One-step methods errors - graphically

Bellow, three explicit RK methods are illustrated on an example of $y^{\prime}=-\frac{1}{3} \frac{y}{x}$ with the initial condition $y(0.2)=-1.5$, using step-sizes $h=0.4$ (black) and $h=0.2$ (red). Exact solution: $-1.5 \cdot 0.2^{\frac{1}{3}} \cdot x^{-\frac{1}{3}}$ (magenta).

Euler's method - the 1 -st order; max GTE is 0.54 and 0.21 , respectively

Midpoint method - the 2-nd order; max GTE is 0.13 and 0.03 , respectively

RK4 method - the 4 -th order; max GTE is 0.005 and 0.0006 , respectively

TEs for methods of different order and for different steps

Expected behavior of GTEs after halving the step (as h approaches zero):
Euler method - the 1-st order method: norm of the global error $\|e(h)\|=\mathcal{O}(h)$ $\|e(h)\|<M|h|,\left\|e\left(\frac{h}{2}\right)\right\|<M\left|\frac{h}{2}\right|=\frac{M}{2}|h| \ldots$ the error can be expected 2-times less
Midpoint (Collatz) method - the 2-nd order method: $\|e(h)\|=\mathcal{O}\left(h^{2}\right)$ $\|e(h)\|<M|h|^{2},\left\|e\left(\frac{h}{2}\right)\right\|<M\left|\frac{h}{2}\right|^{2}=\frac{M}{4}|h|^{2} \ldots 4$-times less
RK4 method - the 4 -st order method: $\|e(h)\|=\mathcal{O}\left(h^{4}\right)$
$\|e(h)\|<M|h|^{4},\left\|e\left(\frac{h}{2}\right)\right\|<M\left|\frac{h}{2}\right|^{4}=\frac{M}{16}|h|^{4} \quad \ldots 16$-times less

Illustration on the previous example:

	Euler		midpoint			RK4
h	max GTE	ratio	max GTE	ratio	max GTE	ratio
0.8	1.38		0.40		0.03	
0.4	0.54	$2.5-2.8$	0.13	$3.4-3.5$	$5 \mathrm{e}-3$	≈ 6.8
0.2	0.21	$2.3-2.6$	0.03	$3.8-3.9$	$6 \mathrm{e}-4$	≈ 9.7
0.1	0.09	$2.2-2.4$	0.008	$4.12-4.15$	$4 \mathrm{e}-5$	≈ 12.8
0.05	0.04	$2.1-2.2$	0.002	$4.16-4.18$	$3 \mathrm{e}-6$	≈ 14.9
0.025	0.02	$2.0-2.1$	0.0005	$4.10-4.13$	$2 \mathrm{e}-7$	≈ 15.9

In this table, for all the methods: In the left column there is the row norm of vector of GTEs in interval $(0.2,4.2)$, in the right column there is the extent of values of the vector of ratios of GTE errors computed for the value of h on the previous line (twice as big) to the current one. As h approaches to zero, this ratio converges to the prediction based on the order of the method.

The dependence of errors on both step-length and order of the method can be used for estimation of errors and that can be further used for optimization of step-length (as usual, we assume well-posed problems: then LTE is $\mathcal{O}\left(h^{p+1}\right)$ for p-th order method).

Estimation of LTE based on halving the step:

Let the last approximation $\left[x_{k}, y_{k}\right]$ be the starting point, let y_{k+1} be the next approximation at x_{k+1} with step h and let \widehat{y}_{k+1} be the approximation at x_{k+1} with step $\frac{h}{2}$ (i.e. two steps are needed from x_{k} to x_{k+1}). Then for a method of p-th order we can roughly estimate LTE for the half-step as $E_{k+1} \approx \frac{\left|y_{k+1}-\widehat{y}_{k+1}\right|}{2^{p}-1}$.

Estim. of LTE based on 2 methods of different order: (as in Matlab ODE45) Let the last approximation $\left[x_{k}, y_{k}\right]$ be the starting point, let y_{k+1} be the next approximation at x_{k+1} using a method of p-th order and let \widehat{y}_{k+1} be the approximation at x_{k+1} using a method of $(p+1)$-th order (both with the same step h). Then LTEs are $E_{k+1}=\left|y_{k+1}-y\left(x_{k+1}\right)\right|=\mathcal{O}\left(h^{p+1}\right), \quad \widehat{E}_{k+1}=\left|\widehat{y}_{k+1}-y\left(x_{k+1}\right)\right|=\mathcal{O}\left(h^{p+2}\right)$ and $E_{k+1}=\left|y_{k+1}-\widehat{y}_{k+1}+\widehat{y}_{k+1}-y\left(x_{k+1}\right)\right|=\left|y_{k+1}-\widehat{y}_{k+1}\right|+\mathcal{O}\left(h^{p+2}\right)$, so $E_{k+1} \approx\left|y_{k+1}-\widehat{y}_{k+1}\right|$.

