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General one-step method

First-order initial value (Cauchy) problem for a system of ODEs:

Y′(x) = F(x,Y(x)) with an initial condition Y(x0) = Y(0) , (1)

In this text, we assume that the problem (1) is well-posed, which means (roughly
speaking) that it’s solution depends continuously on the given data: that a small
perturbation of F or Y(0) leads to a small change of the solution.

We consider here one-step methods only, which have a form of

Y(k+1) = Y(k) + h Φ( Y(k),Y(k+1), xk , h) , (2)

where h is the step-size, xk = x0 + k h and Y(k) is the numerical approximation of the
exact solution Y(xk) of the problem (1).

Examples of one-step methods:

• Explicit Euler’s method: Φ( Y(k),Y(k+1), xk , h) = F(xk ,Y
(k))

• Implicit Euler’s method: Φ( Y(k),Y(k+1), xk , h) = F(xk + h ,Y(k+1))

• Midpoint method: Φ( Y(k),Y(k+1), xk , h) = F(xk + h
2
,Y(k) + h

2
F(xk ,yk))

Convergence, consistency, stability

consistency

differential equation ←−−−−−−−−−−−−−−−−→ discretized equation

| |
| |

well-posed problem stability
| |
↓ convergence ↓

exact solution ←−−−−−−−−−−−−−−−−− numerical solution

Convergence

Global truncation error (GTE) of the approximate solution Y(k) at xk is defined
as

ek = ‖Y(k) − Y(xk)‖ . (3)

The numerical solution on a given interval < a, b > should approach the exact one
(converge to it) as the mesh-size h tends to zero, which means that some norm of the
vector e = (e1, . . . en)T of global errors, where n = |b− a|/h, should tend to zero:

‖e‖ → 0 as h→ 0 .

Order of a method: A method is of p-th order of accuracy, if maximum norm of
a vector e = (e1, . . . en)T of global errors (3) isO(hp): ‖e‖ = max(|e1|, . . . |en|) = O(hp).
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Local truncation error (LTE) at xk+1 is defined as

Ek+1 = ‖Y(k+1) − Ŷ(xk+1)‖ , (4)

where Ŷ(xk+1) is the value of the exact solution for initial condition Ŷ(xk) = Y(k).

Note: Sometimes a method is said to be of p-th order, if LTE is O(hp+1). Both
definitions are compatible for a well-posed problem: the order of the global error at
the n-th time step can be reasonably guessed to be n-times the order of LTE; for fixed
a = x0 and b = xn, n is proportional to 1/h and order of GTE at b can be expected to
be proportional to 1/h times order of LTE, that is O(hp).

Consistency of discretized equation with differential equation

The discretization of the differential equation should become exact, as the mesh-size
tends to zero. Consistency error (for one-step method) at xk is

ηk =

∥∥∥∥ Y(xk+1)−Y(xk)

h
− Φ( Y(xk),Y(xk+1), xk , h)

∥∥∥∥ (5)

– it is the error in discretized equation, if the exact solution evaluated at mesh-points
is substituted into it. It measures the extent to which the true solution satisfies the
discrete equation. Consistency errors should vanish, as the mesh-size tends to zero.

Stability
Numerical errors that are generated as a consequence of using discretized equation,
should be held under control. There are several different definitions of stability which
put this idea into more specific terms. We will not go into further details here.

Lax equivalence theorem

For linear well-posed initial value problem and consistent finite difference approxima-
tion of it, stability is necessary and sufficient condition for convergence.

Note: for nonlinear problems this equivalence does not hold. However, we probably
cannot expect good behaviour of any method which is not convergent for linear prob-
lems, so consistency and stability of methods are important even if nonlinear problems
are solved, when these two properties cannot guarantee convergency.

Examples

The theory will be illustrated on a scalar equation as the simplest case of the system
(1):

y′(x) = f(x, y(x)) , y(x0) = y0 . (6)

Then the consistency error (5) is

ηk =

∣∣∣∣ y(xk+1)− y(xk)

h
− Φ( y(xk), y(xk+1), xk , h)

∣∣∣∣ ,
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the limit of the first term is lim
h→0

y(xk+h)−y(xk)
h

= y′(xk) = f(xk, y(xk)), so the consistency

error tends to zero if and only if lim
h→0

Φ( y(xk), y(xk+1), xk , h) = f(xk, y(xk)) for all xk.

Explicit Euler’s method xk+1 = xk + h, yk+1 = yk + h f(xk, yk)

Convergence

Example: Consider Cauchy problem y′ = 7 y, y(−1.2) = −0.024. On the figure bellow
there is the exact solution (red), several other solutions for different initial conditions
and the approximate solution obtained by forward Euler’s method with step-length
h = 0.1 (blue circles connected by a broken line). Exact solution of the problem
y′ = a y, y(x0) = y0 is y = c · eax, where c = y0 e−ax0 .

Global error: At the given xk, the distance between the approximation point (blue
circle) and the exact solution of the problem (red circle on the red curve).

Local error: At the given xk, the orange segment between the blue and the black circles,
i.e. the (vertical) distance betwen the approximation point and the trajectory of the
solution which passes through the previous approximation point.

Left: Direction field of the equation with different trajectories. Right: Local and
global errors.

k xk y(xk) yk ek = |yk − y(xk)| Ek

0 -1.2 -0.0240 -0.0240 0.0000 -
1 -1.1 -0.0483 -0.0408 0.0075 0.0075
2 -1.0 -0.0973 -0.0694 0.0280 0.0128
3 -0.9 -0.1960 -0.1179 0.0781 0.0218
4 -0.8 -0.3947 -0.2005 0.1942 0.0370

Note: e4 = 0.1942 6=
4∑

k=1

Ek = 0.0791 . . . GTE is not equal to sum of LTE’s
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How to compute the order of LTE and GTE: The technique is allways the same – use
expansion in Taylor series.

LTE (4) at xk+1 is Ek+1 = | yk+1 − y(xk+1)| , where y(xk+1) is the value of the exact

solution y ′ = f(x, y) for initial condition y(xk) = yk.

Euler’s method: yk+1 = yk + h f(xk, yk)

Taylor expansion of y at y(xk): y(xk+1) ≡ y(xk + h) = y(xk) + h y ′(xk) +O(h2).

Using y(xk) = yk and y′(xk) = f(xk, y(xk)) = f(xk, yk): y(xk+1) = yk + h f(xk, yk) +O(h2),

inserting this to the expression for Ek+1 leads to

Ek+1 = | yk + h f(xk, yk) − ( yk + h f(xk, yk) +O(h2) )| = O(h2) .

GTE (3) at xk+1 is ek+1 = | yk+1 − y(xk+1)| .

(a) y(xk+1) = y(xk) + h y′(xk) +O(h2) . . . Taylor expansion of exact solution

(b) yk+1 = yk + h f(xk, yk) . . . Euler’s method

(a) - (b):

y(xk+1)− yk+1 = y(xk)− yk + h (f(xk, y(xk))− f(xk, yk)) +O(h2)

|y(xk+1)− yk+1|︸ ︷︷ ︸ ≤ |y(xk)− yk|︸ ︷︷ ︸ +h |f(xk, y(xk))− f(xk, yk)|+O(h2)

ek+1 ≤ ek + h |f(xk, y(xk))− f(xk, yk)|+ c h2 for some c ∈ R.

The second term at the right hand side can be bounded using Lipschitz condition as

|f(xk, y(xk))− f(xk, yk)| ≤ L |y(xk)− yk| = Lek , and so ek+1 ≤ ek (1 + hL) + c h2 .

By recursion and using notation a = (1 + hL) it follows

e1 ≤ c h2 (the local error at the first step)
e2 ≤ e1 a+ c h2 ≤ a c h2 + c h2 = (a+ 1) c h2

e3 ≤ e2 a+ c h2 ≤ (a+ 1) c h2 a+ c h2 = (a2 + a+ 1) c h2

. . .
en ≤ (an−1 + . . . a2 + a+ 1) c h2 = an−1

a−1 c h
2 = (1+hL)n−1

L
c h ≤ (eLhn − 1) 1

L
c h

– the last inequality follows from the fact x+ 1 ≤ ex. So if hn = |x0 − xn| is constant,
i. e., if we consider some bounded interval only, then the global error is O(h).

Conclusion: Explicit Euler’s method is of the first order.

Consistency

Consistency error (5) is

ηk =

∣∣∣∣ y(xk+1)− y(xk)

h
− f(xk, y(xk))

∣∣∣∣
Taylor expansion gives

y(xk+1) ≡ y(xk + h) = y(xk) + h y′(xk) +O(h2) = y(xk) + h f(xk, y(xk)) +O(h2)
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so y(xk+1)− y(xk) = h f(xk, y(xk)) +O(h2) and after substitution we have

ηk =

∣∣∣∣ h f(xk, y(xk)) +O(h2)

h
− f(xk, y(xk))

∣∣∣∣ = | f(xk, y(xk)) +O(h)− f(xk, y(xk)) | = O(h) ,

which converges to zero as h→ 0.

Stability

Stability will be studied only on a standard model equation

y′(x) = −a y(x) , y(x0) = y0 , a > 0 (7)

However, if a method is not stable on this simple linear equation, we probably cannot
expect its good behaviour on other equations, too.

The exact solution of equation (7) is y0 e−a(x−x0), which tends to zero as x→∞.

Euler’s method:

yk+1 = yk + h(−a yk) = (1− h a) yk = (1− h a)2 yk−1 = · · · = (1− h a)k+1 y0

yk+1 converges to zero if and only if the modulus of the growth factor (1− h a) is less
than 1, which means |ha| < 2 (for 1 < |ha| < 2 it alternates sign, however it is stable).

So explicit Euler’s method is only conditionally stable, see Figure 1.

conditional stability:

• existence of a critical time step beyond which numerical instabilities occur,

• is typical for explicit methods

Figure 1: Problem y′ = −10 y , y(1) = 0.1 solved by explicit Euler’s method. Black
line: exact solution, green line: numerical solution with h = 0.08, red line: numerical
solution with h = 0.21. Blue arrows at background represent directional field for the
given equation.
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Implicit Euler’s method xk+1 = xk + h, yk+1 = yk + h f(xk+1, yk+1)

Convergence and consistency

Using similar techniques as for explicit Euler’s method it can be proved that consistency
error is O(h), LTE is O(h2) and GTE is O(h). So the implicit Euler’s method is
consistent and it is of the first order – the same result as for explicit Euler’s method.

Stability is studied on a standard model equation (7) only.

Implicit Euler’s method: yk+1 = yk + h(−a yk+1) ,

for yk+1 the explicit formula can be obtained as

yk+1 =
1

1 + ha
yk =

(
1

1 + ha

)2

yk−1 = · · · =
(

1

1 + ha

)k+1

y0

yk+1 converges to zero for any choice of h, because the growth factor is allways less
than 1, so implicit Euler’s method is unconditionally stable. This is typical behaviour
of other implicit methods, too. Compare Figures 1 and 2 – the same problem is solved
by explicit (Fig. 1) or implicit (Fig. 2) method.

Figure 2: Problem y′ = −10 y , y(1) = 0.1 solved by implicit Euler’s method. Black
line: exact solution, red line: numerical solution with h = 0.21. Blue arrows at
background represent directional field for the given equation.
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