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A first-order ODE, initial value problem

A first-order ordinary differential equation, initial value problem:

y′ = f(x, y) , with the initial condition y(x0) = y0 . (1)

The equation (1) is called linear, if the function f is linear with respect to
the variable y, i.e. it has a form f(x, y) = g0(x) + g1(x) y .

Existence and uniqueness of the (exact) solution

Before we try to solve the problem numerically, we should verify that the problem
has a unique solution. This topic is covered here by a short recapitulation from a
course on ordinary differential equations.

There are two standard theorems that formulate sufficient conditions for existence
and uniqueness of the solution of the initial value problem (1):

Theorem 1

Suppose that the function f(x, y) and its partial derivative ∂f
∂y

are continuous in

a domain Ω ⊂ R2. Then every point [x0, y0] ∈ Ω determines a unique maximal
solution y(x) of (1), [x, y(x)] ⊂ Ω.

Theorem 2

Let the function f(x, y) be continuous on a rectangle D =< a, b > × < c, d >⊂ R2

and let it be Lipschitz continuous with respect to y in D, i.e. there exists a constant
L such that for all x ∈< a, b > and y1, y2 ∈< c, d >:

|f(x, y1)− f(x, y2)| ≤ L |y1 − y2| . (2)

Then every point [x0, y0] ∈ D determines a unique maximal solution y(x) of (1),
[x, y(x)] ⊂ D. Moreover, if D =< a, b > ×R, then the unique maximal solution
is defined on the whole interval < a, b >.

The Lipschitz condition (2) can be interpreted as requiring a little more than conti-
nuity but a little less than differentiability. (Inequality (2) with L = max

x∈<a,b>
|∂f
∂y

(x)|
follows from differentiability, using the mean value theorem).

A special case – the linear equation

For a linear equation y′ = g0(x) + g1(x) y, the following holds:
Suppose that the functions g0(x) and g1(x) are continuous on an interval < a, b >.
Then every point [x0, y0] ∈< a, b > ×R determines a unique maximal solution y(x)
of (1), defined on the whole interval < a, b >.

Proof: Follows from Theorem 2 with L = max
x∈<a,b>

|g1(x)| .
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Numerical solution

Throughout this text we assume that the assumptions either of Theorem 1 or
of Theorem 2 hold.

Notation:
xk . . . discretization points on x-axis
h = xk+1 − xk . . . the discretization step
yk . . . approximation of the exact value y(xk) of the solution at xk

Explicit Euler’s method (or Euler’s forward method)

choose a step size h and for k = 0, 1, 2, . . . compute

xk+1 = xk + h

yk+1 = yk + h f(xk, yk)

Where this formula comes from - one step of Euler’s forward method:

• express the equation at xk:

y′(xk) = f(xk, y(xk))

• substitute the forward difference instead of the derivative:

y(xk+1)− y(xk)

h
+O(h) = f(xk, y(xk))

• multiply by h and rearange the equation:

y(xk+1) = y(xk) + h f(xk, y(xk)) +O(h2)

• omit the error at the step – switch to the approximate value of y(xk+1):

yk+1 = y(xk) + h f(xk, y(xk))

Implicit Euler method (or Euler backward method)

choose a step size h and for k = 0, 1, 2, . . . compute

xk+1 = xk + h

yk+1 = yk + h f(xk+1, yk+1) – an implicit equation for yk+1

Inference:

• express the equation at xk+1:

y′(xk+1) = f(xk+1, y(xk+1))

• substitute the backward difference instead of the derivative:

y(xk+1)− y(xk)

h
+O(h) = f(xk+1, y(xk+1))

• multiply by h and rearange the equation:

y(xk+1) = y(xk) + h f(xk+1, y(xk+1)) +O(h2)

• omit the error at the step – switch to the approximate value of y(xk+1):

yk+1 = y(xk) + h f(xk+1, yk+1)
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Example 1

Consider Cauchy problem y′ =
y

x2
, y(1) = 2 .

1) Find the domain of the existence and uniqueness of the solution of the problem.

2) Compute an approximate value of y(1.4) using:

a) Explicit Euler method with step size h = 0.2,

b) Implicit Euler method with step size h = 0.2,

c) Explicit and Implicit Euler method with step size h = 0.1.

Solution

1) This is linear differential equation with coefficients g0(x) = 0 and g1(x) = 1
x2 ,

continuous in the intervals I1 = (−∞, 0) and I2 = (0,∞). As x0 = 1 lies in I2,
the interval of maximal solution of the given problem is I2.

2) The results are summarized in Table 1 and for explicit Euler method also
in Figure 1.

Computation:

a) h = 0.2, x0 = 1, y0 = 2

k ≡ f(x0, y0) =
y0

(x0)2
=

2

12
= 2

x1 = x0 + h = 1 + 0.2 = 1.2, y1 = y0 + h k = 2 + 0.2 · 2 = 2.4

k ≡ f(x1, y1) =
y1

(x1)2
=

2.4

(1.2)2
= 1.6667

x2 = x1 + h = 1.2 + 0.2 = 1.4, y2 = y1 + h k = 2.4 + 0.2 · 1.6667 = 2.7333

y(1.4) is approximately equal to y2 = 2.7333.

b) There is no general explicit formula: in every iteration, we have to solve the
equation yk+1 = yk + h f(xk+1, yk+1) ; for this problem it is

yk+1 = yk + h
yk+1

(xk+1)2
.

In the case of linear differential equation like this, however, we can express
yk+1 from the equation above explicitly:

yk+1 =
(xk+1)

2

(xk+1)2 − h
yk .

h = 0.2, x0 = 1, y0 = 2

x1 = x0 + h = 1 + 0.2 = 1.2 , y1 = (x1)2

(x1)2−h y0 = 1.22

1.22−0.2 · 2 = 2.3226

x2 = x1 + h = 1.2 + 0.2 = 1.4 , y2 = (x2)2

(x2)2−h y1 = 1.42

1.42−0.2 · 2.3226 = 2.5865

y(1.4) is approximately equal to y2 = 2.5865.
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c) Using similar process as in a), we obtain values presented at the second column
of Table 1.

y(1.4) is approximately equal to y4 = 2.6979 for explicit Euler method
and to y4 = 2.6241 for the implicit one.

Observations and questions

A) The errors of both explicit and implicit Euler methods are very similar. From
the last row in the Table 1, the errors of explicit and implicit Euler methods can be
computed: they are 0.0756 and 0.0753 for step h = 0.1 and 0.1506 and 0.1497 for
step h = 0.2.

Why should then we bother using the implicit method, which generally requires to
solve an implicit equation in every step? Because of stability (will be covered in
next lectures).

B) Using half step size, the errors are reduced approximately twice. Does this hold
for any numerical method of solving ODE? Could it be improved? See the midpoint
method bellow. The speed of convergence will be discussed in next lectures.

Figure 1: Example 1. Horizontal axis is x, vertical axis is y. Every blue arrow
represent tangent vector to the integral curve passing through the matching point.
The full red line represents the exact solution of the problem with a given initial
condition y(x) = 2 e1−1/x (it can be computed using a separation of variables). Red
and black points represent approximation of the solution computed by Euler method
with step size 0.2 and 0.1, respectively (see also Table 1).
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Midpoint (or Collatz) method

Motivation: Euler (explicit) method is deduced by substitution of the first forward
difference instead of the derivative on the left hand side of the differential equation.

What if we used the first central difference with O(h2) error instead? As we do not
want to involve values at other nodes than at xk and xk+1, we need to use half-step
for the central difference. The inference:

• express the equation at xk + h
2
:

y′
(
xk + h

2

)
= f

(
xk + h

2
, y

(
xk + h

2

))
• substitute the central difference (at xk + h

2
) instead of the derivative:

y(xk+1)− y(xk)

h
+O(h2) = f

(
xk + h

2
, y

(
xk + h

2

))
• multiply by h and rearange the equation:

y(xk+1) = y(xk) + h f
(
xk + h

2
, y

(
xk + h

2

))
+O(h3)

On the right hand side, there is an unknown value of y
(
xk + h

2

)
which we

want to approximate by values of xk and y(xk) in order to obtain an explicit
method. Using forward Euler method with half the step we have

y
(
xk + h

2

)
= y(xk) + h

2
f(xk, y(xk)) +O(h2)

and so

f
(
xk + h

2
, y

(
xk + h

2

))
= f

(
xk + h

2
, y(xk) + h

2
f(xk, y(xk)) +O(h2)

)
from assumptions of Theorem 1 or Theorem 2 it follows

f
(
xk + h

2
, y

(
xk + h

2

))
= f

(
xk + h

2
, y(xk) + h

2
f(xk, y(xk))

)
+O(h2)

because

|f
(
xk + h

2
, y(xk) + h

2
f(xk, y(xk)) +O(h2)

)
−f

(
xk + h

2
, y(xk) + h

2
f(xk, y(xk))

)
| ≤

≤ L |O(h2)| = O(h2)

which leads to

y(xk+1) = y(xk) + h f
(
xk + h

2
, y(xk) + h

2
f(xk, y(xk))

)
+O(h3)

• omit the error at the step – switch to the approximate value of y(xk+1):

yk+1 = y(xk) + h f
(
xk + h

2
, y(xk) + h

2
f(xk, y(xk))

)
.

Algorithm of the midpoint method

choose a step size h and for k = 0, 1, 2, . . . compute

xp = xk + h
2

yp = yk + h
2
f(xk, yk)

xk+1 = xk + h

yk+1 = yk + h f (xp, yp)
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Example 1 – continued

Consider Cauchy problem y′ =
y

x2
, y(1) = 2 .

Compute an approximate value of y(1.4) using midpoint method with step size
h = 0.2 and compare its performance with previous results of Euler methods.

Solution

The results are summarized in Table 1. These results show that midpoint method
gives more precise solution than Euler method (both explicit and implicit), even in
the case when for midpoint method, step size twice as long as for Euler was used
(which represents comparable work).

Computation:

h = 0.2, x0 = 1, y0 = 2

k1 ≡ f(x0, y0) =
y0
x2
0

=
2

12
= 2,

xp = x0 + 1
2
h = 1 + 0.1 = 1.1

yp = y0 + 1
2
h k1 = 2 + 0.1 · 2 = 2.2

k2 ≡ f(xp, yp) =
yp
x2
p

=
2.2

1.12
= 1.8182

x1 = x0 + h = 1 + 0.2 = 1.2
y1 = y0 + h k2 = 2 + 0.2 · 1.8182 = 2.3636

k1 ≡ f(x1, y1) =
y1
x2
1

=
2.3636

1.22
= 1.6414

xp = x1 + 1
2
h = 1.2 + 0.1 = 1.3

yp = y1 + 1
2
h k1 = 2.3636 + 0.1 · 1.6414 = 2.5278

k2 ≡ f(xp, yp) =
yp
x2
p

=
2.5278

1.32
= 1.4957

x2 = x1 + h = 1.2 + 0.2 = 1.4
y2 = y1 + h k2 = 2.3636 + 0.2 · 1.4957 = 2.6628

y(1.4) is approximately equal to y2 = 2.6628.
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exact Euler h = 0.1 Euler h = 0.2 midpoint
xk y(xk) Explic. Implic. Explic. Implic. h = 0.2

1 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
1.1 2.1903 2.2000 2.1802 (2.2000)
1.2 2.3627 2.3818 2.3429 2.4000 2.3226 2.3636
1.3 2.5191 2.5472 2.4902 (2.5278)
1.4 2.6614 2.6979 2.6241 2.7333 2.5865 2.6628
1.5 2.7912 2.8356 2.7462 (2.7986)
1.6 2.9100 2.9616 2.8578 3.0122 2.8057 2.9115
1.7 3.0190 3.0773 2.9602 (3.0253)
1.8 3.1192 3.1838 3.0545 3.2476 2.9903 3.1209
1.9 3.2118 3.2821 3.1415 (3.2172)
2.0 3.2974 3.3730 3.2221 3.4480 3.1477 3.2992

Table 1: Example 1. The first column represents values of x, where the approxi-
mate solution is computed. At the second column there is exact solution, the third
and the fourth columns present solution obtained by Euler method with step size
h = 0.1 and h = 0.2, respectively, and the last column presents approximate solution
obtained by midpoint method with step size h = 0.2.
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