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A system of first-order ODEs, initial value problem

First-order initial value (Cauchy) problem for a system of ODEs:

Y′(x) = F(x,Y(x)) with an initial condition Y(x0) = Y(0) , (1)

where

Y(x) =


y1(x)
y2(x)

...
yn(x)

 , Y′(x) =


y′1(x)
y′2(x)

...
y′n(x)

 , F(x,Y) =


f1(x, y1, y2, . . . , yn)
f2(x, y1, y2, . . . , yn)

...
fn(x, y1, y2, . . . , yn)


The system of (1) is called linear, if functions fi are linear with respect to all variables
yj , i.e., they have the form

fi(x, y1, . . . , yn) = gi0(x) + gi1(x) y1 + gi2(x) y2 + ...+ gin(x) yn , i = 1, . . . n . (2)

In matrix form this can be written as

Y′ = G Y + G0, where G = {gij}ni,j=1 and G0 = (g1 0, g2 0, . . . gn0)
T .

Existence and uniqueness of the (exact) solution

There are two standard theorems that formulate sufficient conditions for existence and
uniqueness of the solution of the initial value problem (1):

Theorem 1

Suppose that for i, j = 1, . . . n, functions fi and their partial derivatives ∂fi
∂yj

are con-

tinuous in a domain Ω ⊂ Rn+1. Then every point [x0,Y
(0)] ∈ Ω determines a unique

maximal solution Y(x) of (1), [x,Y(x)] ⊂ Ω.

Theorem 2

Suppose that for i, j = 1, . . . n, functions fi are continuous in some region D defined
by a ≤ x ≤ b, aj < yj < bj and that F satisfies Lipschitz condition with respect to Y
in D, i. e., there exists a constant L such that

‖F (x,Y)− F (x,Z)‖ ≤ L ‖Y − Z‖ ∀ (x,Y), (x,Z) ∈ D . (3)

Then for any (x0,Y
(0)) ∈ D there exists a unique maximal solution Y(x) ⊂ D of the

problem (1). Moreover, if D = I ×Rn, then the unique maximal solution is defined on
the whole interval I.

A special case – the linear system

For a linear system (2) the following holds:

Suppose that all functions gij(x) are continuous on an interval I =< a, b >. Then the

assumptions of Theorem 2 are satisfied in D = I × Rn with L = max
x∈I
|gij(x)|, so the

unique maximal solution is defined on the whole interval I.

1 c© Certik



ODE - initial value problems II ver. 18.3.2024

Numerical solution

Throughout the text, we assume that the problem (1) satisfies the assumptions either
of Theorem 1 or of Theorem 2 in some region D and (x0,Y

(0)) ∈ D.

It also implicates that the problem is well-posed, which means (roughly speaking) that
it’s solution depends continuously on the given data: that a small perturbation of F
or Y(0) leads to a small change of the solution.

Notation:
xk . . . discretization points on x-axis
h = xk+1 − xk . . . the discretization step

Y(k) . . . approximation of the exact value Y(xk) of the solution at xk

Explicit Euler’s method (or Euler’s forward method)

choose a step size h and for k = 0, 1, 2, . . .

1. compute the derivative K of the vector function Y as

K = F(xk, Y(k))

2. set

xk+1 = xk + h

Y(k+1) = Y(k) + hK

Implicit Euler’s method (or Euler’s backward method)

choose a step size h and for k = 0, 1, 2, . . .

1. set xk+1 = xk + h

2. compute Y(k+1) from the equation (using FPI or Newton’s method)

Y(k+1) = Y(k) + hF(xk+1, Y(k+1))

For linear system Y′ = G Y + G0, the equation above represents a linear system

(I− hG) Y(k+1) = Y(k) + hG0 (both G and G0 generally depend on xk+1).

Midpoint (Collatz) method

choose a step size h and for k = 0, 1, 2, . . .

1. compute an auxiliary point [xp,Yp] using forward Euler’s method with half-step:

K1 = F(xk, Y(k)), xp = xk + 1
2
h, Yp = Y(k) + 1

2
hK1

2. compute the derivative K2 at the auxiliary point [xp,Yp] as

K2 = F(xp, Yp)

3. set

xk+1 = xk + h

Y(k+1) = Y(k) + hK2
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Example 1

Consider Cauchy problem

Y′ =

 y1 sin(x) + y3
y2 ln(x + 1)− 4

2y1 −
y3

x− 2

 , Y(1) =

 −1
1
2


a) Verify that the given problem has unique solution and find the interval I of its

maximal solution.

b) Choose the step size h = 0.1 and compute an approximate value of Y(1.2) using
Euler’s (explicit) method.

c) Choose the step size h = 0.2 and compute an approximate value of Y(1.2) using
midpoint method.

Solution

a) The system of equations is linear, so the continuity of its coefficients has to be
checked only:

x + 1 > 0 ⇒ x > −1, x− 2 6= 0 ⇒ x 6= 2 I1 = (−1, 2), I2 = (2,∞)

x0 = 1 ∈ I1 ⇒ interval of maximal solution is (−1, 2).

b) x0 = 1, Y(0) = (−1, 1, 2)T , h = 0.1 :

K = F(x0,Y
(0)) =

 −1 · sin(1) + 2
1 · ln(1 + 1)− 4

2 · (−1) − 2

1− 2

 =

 −0.84147 + 2
0.69315− 4
−2 + 2

 =

 1.1585
−3.3068

0


x1 = x0 + h = 1 + 0.1 = 1.1

Y(1) = Y(0) + hK =

 −1
1
2

 + 0.1

 1.1585
−3.3068

0

 =

 −0.8842
0.6693

2



K = F(x1,Y
(1)) =

 −0.8842 · sin(1.1) + 2
0.6693 · ln(1.1 + 1)− 4

2 · (−0.8842) − 2

1.1− 2

 =

 −0.7880 + 2
0.6693 · 0.74194− 4
−1.7684 + 2.2222

 =

 1.2120
−3.5034
0.45380


x2 = x1 + h = 1.1 + 0.1 = 1.2

Y(2) = Y(1) + hK =

 −0.8842
0.6693

2

 + 0.1

 1.2120
−3.5034
0.4538

 =

 −0.7630
0.3190
2.0454


The value of Y(1.2) is approximately Y(2) = (−0.7630, 0.3190, 2.0454)T .
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c) x0 = 1, Y(0) = (−1, 1, 2)T , h = 0.2 :

K1 = F(x0,Y
(0)) =

 −1 · sin(1) + 2
1 · ln(1 + 1)− 4

2 · (−1) − 2

1− 2

 =

 −0.84147 + 2
0.69315− 4
−2 + 2

 =

 1.1585
−3.3068

0


xp = x0 + 1

2
h = 1 + 0.1 = 1.1

Yp = Y(0)+
1

2
hK1 =

 −1
1
2

 + 0.1

 1.1585
−3.3068

0

 =

 −0.8842
0.6693

2



K2 = F(xp,Yp) =

 −0.8842 · sin(1.1) + 2
0.6693 · ln(1.1 + 1)− 4

2 · (−0.8842) − 2

1.1− 2

 =

 −0.7880 + 2
0.6693 · 0.74194− 4
−1.7684 + 2.2222

 =

 1.2120
−3.5034
0.45380



Y(1) = Y(0) + hK2 =

 −1
1
2

 + 0.2

 1.2120
−3.5034
0.4538

 =

 −0.7576
0.2993
2.091


The value of Y(1.2) is approximately Y(1) = (−0.7576, 0.2993, 2.091)T .

When using implicit Euler’s method instead of the explicit one (Euler’s or midpoint),
then at every iteration, a system of equations has to be solved:

x0 = 1, Y(0) = (−1, 1, 2)T , choose h = 0.2

x1 = x0 + h = 1 + 0.2 = 1.2

Y(1) has to be computed from the system of equations Y(1) = Y(0) + hF(x1, Y(1)) :

Y(1) ≡

 y
(1)
1

y
(1)
2

y
(1)
3

 =

 −1
1
2

+ 0.2


y
(1)
1 sin(1.2) + y

(1)
3

y
(1)
2 ln(1.2 + 1)− 4

2y
(1)
1 − y

(1)
3

1.2− 2


This system can be solved using FPI for unknown Y(1).

Moreover, this system is linear (because the given system is linear) and so it can also
be solved using Gauss elimination (after reorganizing).
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Higher-order initial value problems

Differential equation of the n-th order:

yn(x) = f(x, y, y′, y′′, . . . yn−1) with initial conditions

y(x0) = y
(0)
1 , y′(x0) = y

(0)
2 , . . . yn−1(x0) = y(0)n (4)

In order to be able to use methods for first-order problems, we need to represent this
diferential equation of n-th order as n first-order diferential equations. Introducing
auxiliary variables y1 = y, y2 = y′, y3 = y′′, . . . yn = yn−1 into equation (4) leads to a
system (1) with

F(x,Y) =


y2
y3
...

f(x, y1, y2, . . . , yn)

 , Y(x0) =


y
(0)
1

y
(0)
2
...

y
(0)
n



Example 2 - a harmonic oscilator (damped oscillations)

Consider the equation y′′ + 2y′ + y = e−t with initial cond. y(0) = 2, y′(0) = −4.

Find the approximate solution at time t = 0.2. Use Euler’s method with h = 0.1.

Solution

The second-order problem has to be formulated as two first-order equations: set y1 = y
and y2 = y′ (i.e. use 2 scalar functions: y1 represents the amplitude and y2 the velocity).

We have y′1 = y2 and y′2 = et − 2y2 − y1:

Y′ =

[
y2

e−t − 2y2 − y1

]
, Y(0) =

[
2
−4

]
h = 0.1, t0 = 0, Y(0) = (2,−4)T

K = F(t0,Y
(0)) =

[
−4

e0 − 2 · (−4)− 2

]
=

[
−4
7

]
t1 = t0 + h = 0.1

Y(1) = Y(0) + hK =

[
2
−4

]
+ 0.1

[
−4
7

]
=

[
1.6
−3.3

]

K = F(t1,Y
(1)) =

[
−3.3

e−0.1 − 2 · (−3.3)− 1.6

]
=

[
−3.3000
5.9048

]
t2 = t1 + h = 0.2

Y(2) = Y(1) + hK =

[
1.6
−3.3

]
+ 0.1

[
−3.3000
5.9048

]
=

[
1.2700
−2.7095

]
At time t = 0.2, the amplitude y(0.2) is approximately 1.2700 and the velocity y′(0.2) is
approximately -2.7095. (The exact solution: y(t) = (2−2t+0.5t2) e−t, y(0.2) = 1.3263.)
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Example 3

Consider Cauchy problem (x− 1)y′′′ + 2xy′′ + 5 = 2x2y′′ + (x− 1)
√

(y′)2 − 2

with initial conditions y(0) = 0, y′(0) = 2, y′′(0) = −1 .

a) Find a domain where existence of a unique solution of the problem is guaranteed.

b) Compute an approximate value of y′(0.1) using Euler’s method.

Solution

a) First of all, express the equation in normal (canonical) form:

y′′′ =
√

(y′)2 − 2 + 2x y′′ − 5

x− 1

Now set y1 = y, y2 = y′, y3 = y′′ and transform it to the first-order system:

Y′ =

 y2
y3√

(y2)2 − 2 + 2x y3 −
5

x− 1

 , Y(0) =

 0
2
−1


Functions y2, y3 and

√
(y2)2 − 1+2x y3− 5

x−1 and their derivatives with respect

to yi (∂f3
∂y2

= y2√
(y2)2−2

) are continuous for x 6= 1 a y2 6∈ 〈−
√

2,
√

2〉, i.e on the

domains

Ω1 = (−∞, 1)×R× (−∞,−
√

2)×R , Ω2 = (−∞, 1)×R× (
√

2,∞)×R

Ω3 = (1,∞)×R× (−∞,−
√

2)×R , Ω4 = (1,∞)×R× (
√

2,∞)×R

The initial condition [0, 0, 2,−1] is situated in the domain Ω2, and so the domain,
where existence of a unique solution is guaranteed, is Ω2 .

b) We have x0 = 0, Y(0) = (0, 2,−1)T and we choose h = 0.1 :

K = F(x0,Y
(0)) =

 2
−1

√
22 − 2 + 2 · 0 · (−1) − 5

0− 1

 =

 2
−1√

2 + 5

 =

 2
−1

6.4142



x1 = x0 + h = 0 + 0.1 = 0.1

Y(1) = Y(0) + hK =

 0
2
−1

 + 0.1

 2
−1

6.4142

 =

 0.2
1.9

−0.3586


The value of y′(0.1) is approximately y

(1)
2 = 1.9 .
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