A system of first-order ODEs, initial value problem

First-order initial value (Cauchy) problem for a system of ODEs:

$$
\begin{equation*}
\mathbf{Y}^{\prime}(x)=\mathbf{F}(x, \mathbf{Y}(x)) \quad \text { with an initial condition } \mathbf{Y}\left(x_{0}\right)=\mathbf{Y}^{(0)}, \tag{1}
\end{equation*}
$$

where

$$
\mathbf{Y}(x)=\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
\vdots \\
y_{n}(x)
\end{array}\right], \mathbf{Y}^{\prime}(x)=\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
\vdots \\
y_{n}^{\prime}(x)
\end{array}\right], \mathbf{F}(x, \mathbf{Y})=\left[\begin{array}{c}
f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
\vdots \\
f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{array}\right]
$$

The system of (1) is called linear, if functions f_{i} are linear with respect to all variables y_{j}, i.e., they have the form

$$
\begin{equation*}
f_{i}\left(x, y_{1}, \ldots, y_{n}\right)=g_{i 0}(x)+g_{i 1}(x) y_{1}+g_{i 2}(x) y_{2}+\ldots+g_{i n}(x) y_{n}, \quad i=1, \ldots n . \tag{2}
\end{equation*}
$$

In matrix form this can be written as

$$
\mathbf{Y}^{\prime}=\mathbf{G} \mathbf{Y}+\mathbf{G}_{0}, \quad \text { where } \mathbf{G}=\left\{g_{i j}\right\}_{i, j=1}^{n} \text { and } \mathbf{G}_{0}=\left(g_{10}, g_{20}, \ldots g_{n 0}\right)^{T}
$$

Existence and uniqueness of the (exact) solution

There are two standard theorems that formulate sufficient conditions for existence and uniqueness of the solution of the initial value problem (1):

Theorem 1

Suppose that for $i, j=1, \ldots n$, functions f_{i} and their partial derivatives $\frac{\partial f_{i}}{\partial y_{j}}$ are continuous in a domain $\Omega \subset R^{n+1}$. Then every point $\left[x_{0}, \mathbf{Y}^{(0)}\right] \in \Omega$ determines a unique maximal solution $\mathbf{Y}(x)$ of (1), $[x, \mathbf{Y}(x)] \subset \Omega$.

Theorem 2

Suppose that for $i, j=1, \ldots n$, functions f_{i} are continuous in some region D defined by $a \leq x \leq b, a_{j}<y_{j}<b_{j}$ and that F satisfies Lipschitz condition with respect to \mathbf{Y} in D, i. e., there exists a constant L such that

$$
\begin{equation*}
\|F(x, \mathbf{Y})-F(x, \mathbf{Z})\| \leq L\|\mathbf{Y}-\mathbf{Z}\| \quad \forall(x, \mathbf{Y}),(x, \mathbf{Z}) \in D \tag{3}
\end{equation*}
$$

Then for any $\left(x_{0}, \mathbf{Y}^{(0)}\right) \in D$ there exists a unique maximal solution $\mathbf{Y}(x) \subset D$ of the problem (1). Moreover, if $D=I \times R^{n}$, then the unique maximal solution is defined on the whole interval I.

A special case - the linear system

For a linear system (2) the following holds:
Suppose that all functions $g_{i j}(x)$ are continuous on an interval $\left.I=<a, b\right\rangle$. Then the assumptions of Theorem 2 are satisfied in $D=I \times R^{n}$ with $L=\max _{x \in I}\left|g_{i j}(x)\right|$, so the unique maximal solution is defined on the whole interval I.

Numerical solution

Throughout the text, we assume that the problem (1) satisfies the assumptions either of Theorem 1 or of Theorem 2 in some region D and $\left(x_{0}, \mathbf{Y}^{(0)}\right) \in D$.

It also implicates that the problem is well-posed, which means (roughly speaking) that it's solution depends continuously on the given data: that a small perturbation of \mathbf{F} or $\mathbf{Y}^{(0)}$ leads to a small change of the solution.

Notation:
$x_{k} \ldots$ discretization points on x-axis
$h=x_{k+1}-x_{k} \ldots$ the discretization step
$\mathbf{Y}^{(k)} \ldots$ approximation of the exact value $\mathbf{Y}\left(x_{k}\right)$ of the solution at x_{k}

Explicit Euler's method (or Euler's forward method)
choose a step size h and for $k=0,1,2, \ldots$

1. compute the derivative \mathbf{K} of the vector function \mathbf{Y} as

$$
\mathbf{K}=\mathbf{F}\left(x_{k}, \mathbf{Y}^{(k)}\right)
$$

2. set

$$
\begin{aligned}
& x_{k+1}=x_{k}+h \\
& \mathbf{Y}^{(k+1)}=\mathbf{Y}^{(k)}+h \mathbf{K}
\end{aligned}
$$

Implicit Euler's method (or Euler's backward method)
choose a step size h and for $k=0,1,2, \ldots$

1. set $x_{k+1}=x_{k}+h$
2. compute $\mathbf{Y}^{(k+1)}$ from the equation (using FPI or Newton's method)

$$
\mathbf{Y}^{(k+1)}=\mathbf{Y}^{(k)}+h \mathbf{F}\left(x_{k+1}, \mathbf{Y}^{(k+1)}\right)
$$

For linear system $\mathbf{Y}^{\prime}=\mathbf{G} \mathbf{Y}+\mathbf{G}_{0}$, the equation above represents a linear system $(\mathbf{I}-h \mathbf{G}) \mathbf{Y}^{(k+1)}=\mathbf{Y}^{(k)}+h \mathbf{G}_{0} \quad\left(\right.$ both \mathbf{G} and \mathbf{G}_{0} generally depend on $\left.x_{k+1}\right)$.

Midpoint (Collatz) method

choose a step size h and for $k=0,1,2, \ldots$

1. compute an auxiliary point $\left[x_{p}, \mathbf{Y}_{p}\right]$ using forward Euler's method with half-step:

$$
\mathbf{K}_{1}=\mathbf{F}\left(x_{k}, \mathbf{Y}^{(k)}\right), \quad x_{p}=x_{k}+\frac{1}{2} h, \quad \mathbf{Y}_{p}=\mathbf{Y}^{(k)}+\frac{1}{2} h \mathbf{K}_{1}
$$

2. compute the derivative \mathbf{K}_{2} at the auxiliary point $\left[x_{p}, \mathbf{Y}_{p}\right]$ as

$$
\mathbf{K}_{2}=\mathbf{F}\left(x_{p}, \mathbf{Y}_{p}\right)
$$

3. set

$$
\begin{aligned}
& x_{k+1}=x_{k}+h \\
& \mathbf{Y}^{(k+1)}=\mathbf{Y}^{(k)}+h \mathbf{K}_{2}
\end{aligned}
$$

Example 1

Consider Cauchy problem

$$
\mathbf{Y}^{\prime}=\left[\begin{array}{c}
y_{1} \sin (x)+y_{3} \\
y_{2} \ln (x+1)-4 \\
2 y_{1}-\frac{y_{3}}{x-2}
\end{array}\right], \quad \mathbf{Y}(1)=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]
$$

a) Verify that the given problem has unique solution and find the interval I of its maximal solution.
b) Choose the step size $h=0.1$ and compute an approximate value of $\mathbf{Y}(1.2)$ using Euler's (explicit) method.
c) Choose the step size $h=0.2$ and compute an approximate value of $\mathbf{Y}(1.2)$ using midpoint method.

Solution

a) The system of equations is linear, so the continuity of its coefficients has to be checked only:

$$
\begin{aligned}
& x+1>0 \Rightarrow x>-1, \quad x-2 \neq 0 \Rightarrow x \neq 2 \quad I_{1}=(-1,2), I_{2}=(2, \infty) \\
& x_{0}=1 \in I_{1} \Rightarrow \text { interval of maximal solution is }(-1,2) .
\end{aligned}
$$

b) $x_{0}=1, \mathbf{Y}^{(0)}=(-1,1,2)^{T}, h=0.1$:

$$
\begin{aligned}
& \mathbf{K}=\mathbf{F}\left(x_{0}, \mathbf{Y}^{(0)}\right)=\left[\begin{array}{c}
-1 \cdot \sin (1)+2 \\
1 \cdot \ln (1+1)-4 \\
2 \cdot(-1)-\frac{2}{1-2}
\end{array}\right]=\left[\begin{array}{c}
-0.84147+2 \\
0.69315-4 \\
-2+2
\end{array}\right]=\left[\begin{array}{c}
1.1585 \\
-3.3068 \\
0
\end{array}\right] \\
& x_{1}=x_{0}+h=1+0.1=1.1 \\
& \mathbf{Y}^{(1)}=\mathbf{Y}^{(0)}+h \mathbf{K}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]+0.1\left[\begin{array}{c}
1.1585 \\
-3.3068 \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.8842 \\
0.6693 \\
2
\end{array}\right] \\
& \mathbf{K}=\mathbf{F}\left(x_{1}, \mathbf{Y}^{(1)}\right)=\left[\begin{array}{c}
-0.8842 \cdot \sin (1.1)+2 \\
0.6693 \cdot \ln (1.1+1)-4 \\
2 \cdot(-0.8842)-\frac{2}{1.1-2}
\end{array}\right]=\left[\begin{array}{c}
-0.7880+2 \\
0.6693 \cdot 0.74194-4 \\
-1.7684+2.2222
\end{array}\right]=\left[\begin{array}{c}
1.2120 \\
-3.5034 \\
0.45380
\end{array}\right] \\
& x_{2}=x_{1}+h=1.1+0.1=1.2 \\
& \mathbf{Y}^{(2)}=\mathbf{Y}^{(1)}+h \mathbf{K}=\left[\begin{array}{c}
-0.8842 \\
0.6693 \\
2
\end{array}\right]+0.1\left[\begin{array}{c}
1.2120 \\
-3.5034 \\
0.4538
\end{array}\right]=\left[\begin{array}{c}
-0.7630 \\
0.3190 \\
2.0454
\end{array}\right]
\end{aligned}
$$

The value of $\mathbf{Y}(1.2)$ is approximately $\mathbf{Y}^{(2)}=(-0.7630,0.3190,2.0454)^{T}$.
c) $x_{0}=1, \mathbf{Y}^{(0)}=(-1,1,2)^{T}, h=0.2$:

$$
\begin{aligned}
& \mathbf{K}_{1}=\mathbf{F}\left(x_{0}, \mathbf{Y}^{(0)}\right)=\left[\begin{array}{c}
-1 \cdot \sin (1)+2 \\
1 \cdot \ln (1+1)-4 \\
2 \cdot(-1)-\frac{2}{1-2}
\end{array}\right]=\left[\begin{array}{c}
-0.84147+2 \\
0.69315-4 \\
-2+2
\end{array}\right]=\left[\begin{array}{c}
1.1585 \\
-3.3068 \\
0
\end{array}\right] \\
& x_{p}=x_{0}+\frac{1}{2} h=1+0.1=1.1 \\
& \mathbf{Y}_{p}=\mathbf{Y}^{(0)}+\frac{1}{2} h \mathbf{K}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]+0.1\left[\begin{array}{c}
1.1585 \\
-3.3068 \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.8842 \\
0.6693 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{K}_{2}=\mathbf{F}\left(x_{p}, \mathbf{Y}_{p}\right)=\left[\begin{array}{c}
-0.8842 \cdot \sin (1.1)+2 \\
0.6693 \cdot \ln (1.1+1)-4 \\
2 \cdot(-0.8842)-\frac{2}{1.1-2}
\end{array}\right]=\left[\begin{array}{c}
-0.7880+2 \\
0.6693 \cdot 0.74194-4 \\
-1.7684+2.2222
\end{array}\right]=\left[\begin{array}{c}
1.2120 \\
-3.5034 \\
0.45380
\end{array}\right]
$$

$$
\mathbf{Y}^{(1)}=\mathbf{Y}^{(0)}+h \mathbf{K}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]+0.2\left[\begin{array}{c}
1.2120 \\
-3.5034 \\
0.4538
\end{array}\right]=\left[\begin{array}{c}
-0.7576 \\
0.2993 \\
2.091
\end{array}\right]
$$

The value of $\mathbf{Y}(1.2)$ is approximately $\mathbf{Y}^{(1)}=(-0.7576,0.2993,2.091)^{T}$.

When using implicit Euler's method instead of the explicit one (Euler's or midpoint), then at every iteration, a system of equations has to be solved:
$x_{0}=1, \mathbf{Y}^{(0)}=(-1,1,2)^{T}$, choose $h=0.2$
$x_{1}=x_{0}+h=1+0.2=1.2$
$\mathbf{Y}^{(1)}$ has to be computed from the system of equations $\mathbf{Y}^{(1)}=\mathbf{Y}^{(0)}+h \mathbf{F}\left(x_{1}, \mathbf{Y}^{(1)}\right)$:

$$
\mathbf{Y}^{(1)} \equiv\left[\begin{array}{l}
y_{1}^{(1)} \\
y_{2}^{(1)} \\
y_{3}^{(1)}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]+0.2\left[\begin{array}{c}
y_{1}^{(1)} \sin (1.2)+y_{3}^{(1)} \\
y_{2}^{(1)} \ln (1.2+1)-4 \\
2 y_{1}^{(1)}-\frac{y_{3}^{(1)}}{1.2-2}
\end{array}\right]
$$

This system can be solved using FPI for unknown $\mathbf{Y}^{(1)}$.
Moreover, this system is linear (because the given system is linear) and so it can also be solved using Gauss elimination (after reorganizing).

Higher-order initial value problems

Differential equation of the n-th order:

$$
\begin{gather*}
y^{n}(x)=f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{n-1}\right) \quad \text { with initial conditions } \\
y\left(x_{0}\right)=y_{1}^{(0)}, \quad y^{\prime}\left(x_{0}\right)=y_{2}^{(0)}, \quad \ldots \quad y^{n-1}\left(x_{0}\right)=y_{n}^{(0)} \tag{4}
\end{gather*}
$$

In order to be able to use methods for first-order problems, we need to represent this diferential equation of n-th order as n first-order diferential equations. Introducing auxiliary variables $y_{1}=y, y_{2}=y^{\prime}, y_{3}=y^{\prime \prime}, \ldots y_{n}=y^{n-1}$ into equation (4) leads to a system (1) with

$$
\mathbf{F}(x, \mathbf{Y})=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
\vdots \\
f\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{array}\right], \quad \mathbf{Y}\left(x_{0}\right)=\left[\begin{array}{c}
y_{1}^{(0)} \\
y_{2}^{(0)} \\
\vdots \\
y_{n}^{(0)}
\end{array}\right]
$$

Example 2-a harmonic oscilator (damped oscillations)
Consider the equation $y^{\prime \prime}+2 y^{\prime}+y=e^{-t}$ with initial cond. $y(0)=2, y^{\prime}(0)=-4$.
Find the approximate solution at time $t=0.2$. Use Euler's method with $h=0.1$.

Solution

The second-order problem has to be formulated as two first-order equations: set $y_{1}=y$ and $y_{2}=y^{\prime}$ (i.e. use 2 scalar functions: y_{1} represents the amplitude and y_{2} the velocity). We have $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=e^{t}-2 y_{2}-y_{1}$:

$$
\mathbf{Y}^{\prime}=\left[\begin{array}{c}
y_{2} \\
e^{-t}-2 y_{2}-y_{1}
\end{array}\right], \quad \mathbf{Y}(0)=\left[\begin{array}{c}
2 \\
-4
\end{array}\right]
$$

$h=0.1, \quad t_{0}=0, \quad \mathbf{Y}^{(0)}=(2,-4)^{T}$
$\mathbf{K}=\mathbf{F}\left(t_{0}, \mathbf{Y}^{(0)}\right)=\left[\begin{array}{c}-4 \\ e^{0}-2 \cdot(-4)-2\end{array}\right]=\left[\begin{array}{c}-4 \\ 7\end{array}\right]$
$t_{1}=t_{0}+h=0.1$
$\mathbf{Y}^{(1)}=\mathbf{Y}^{(0)}+h \mathbf{K}=\left[\begin{array}{c}2 \\ -4\end{array}\right]+0.1\left[\begin{array}{c}-4 \\ 7\end{array}\right]=\left[\begin{array}{c}1.6 \\ -3.3\end{array}\right]$
$\mathbf{K}=\mathbf{F}\left(t_{1}, \mathbf{Y}^{(1)}\right)=\left[\begin{array}{c}-3.3 \\ e^{-0.1}-2 \cdot(-3.3)-1.6\end{array}\right]=\left[\begin{array}{c}-3.3000 \\ 5.9048\end{array}\right]$
$t_{2}=t_{1}+h=0.2$
$\mathbf{Y}^{(2)}=\mathbf{Y}^{(1)}+h \mathbf{K}=\left[\begin{array}{c}1.6 \\ -3.3\end{array}\right]+0.1\left[\begin{array}{c}-3.3000 \\ 5.9048\end{array}\right]=\left[\begin{array}{c}1.2700 \\ -2.7095\end{array}\right]$
At time $t=0.2$, the amplitude $y(0.2)$ is approximately 1.2700 and the velocity $y^{\prime}(0.2)$ is approximately -2.7095. (The exact solution: $y(t)=\left(2-2 t+0.5 t^{2}\right) e^{-t}, y(0.2)=1.3263$.)

Example 3

Consider Cauchy problem $(x-1) y^{\prime \prime \prime}+2 x y^{\prime \prime}+5=2 x^{2} y^{\prime \prime}+(x-1) \sqrt{\left(y^{\prime}\right)^{2}-2}$
with initial conditions $y(0)=0, y^{\prime}(0)=2, y^{\prime \prime}(0)=-1$.
a) Find a domain where existence of a unique solution of the problem is guaranteed.
b) Compute an approximate value of $y^{\prime}(0.1)$ using Euler's method.

Solution

a) First of all, express the equation in normal (canonical) form:

$$
y^{\prime \prime \prime}=\sqrt{\left(y^{\prime}\right)^{2}-2}+2 x y^{\prime \prime}-\frac{5}{x-1}
$$

Now set $y_{1}=y, y_{2}=y^{\prime}, y_{3}=y^{\prime \prime}$ and transform it to the first-order system:

$$
\mathbf{Y}^{\prime}=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
\sqrt{\left(y_{2}\right)^{2}-2}+2 x y_{3}-\frac{5}{x-1}
\end{array}\right], \quad \mathbf{Y}(0)=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]
$$

Functions y_{2}, y_{3} and $\sqrt{\left(y_{2}\right)^{2}-1}+2 x y_{3}-\frac{5}{x-1}$ and their derivatives with respect to $y_{i}\left(\frac{\partial f_{3}}{\partial y_{2}}=\frac{y_{2}}{\sqrt{\left(y_{2}\right)^{2}-2}}\right)$ are continuous for $x \neq 1$ a $y_{2} \notin\langle-\sqrt{2}, \sqrt{2}\rangle$, i.e on the domains

$$
\begin{array}{ll}
\Omega_{1}=(-\infty, 1) \times R \times(-\infty,-\sqrt{2}) \times R, & \Omega_{2}=(-\infty, 1) \times R \times(\sqrt{2}, \infty) \times R \\
\Omega_{3}=(1, \infty) \times R \times(-\infty,-\sqrt{2}) \times R, & \Omega_{4}=(1, \infty) \times R \times(\sqrt{2}, \infty) \times R
\end{array}
$$

The initial condition $[0,0,2,-1]$ is situated in the domain Ω_{2}, and so the domain, where existence of a unique solution is guaranteed, is Ω_{2}.
b) We have $x_{0}=0, \mathbf{Y}^{(0)}=(0,2,-1)^{T}$ and we choose $h=0.1$:

$$
\begin{aligned}
& \mathbf{K}=\mathbf{F}\left(x_{0}, \mathbf{Y}^{(0)}\right)=\left[\begin{array}{c}
2 \\
-1 \\
\sqrt{2^{2}-2}+2 \cdot 0 \cdot(-1)-\frac{5}{0-1}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
\sqrt{2}+5
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
6.4142
\end{array}\right] \\
& x_{1}=x_{0}+h=0+0.1=0.1 \\
& \mathbf{Y}^{(1)}=\mathbf{Y}^{(0)}+h \mathbf{K}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]+0.1\left[\begin{array}{c}
2 \\
-1 \\
6.4142
\end{array}\right]=\left[\begin{array}{c}
0.2 \\
1.9 \\
-0.3586
\end{array}\right]
\end{aligned}
$$

The value of $y^{\prime}(0.1)$ is approximately $y_{2}^{(1)}=1.9$.

