Matrix powers - transformation of the unit circle

Example 1 - a general matrix with 2 different real eigenvalues
$\begin{array}{ll}A=\left[\begin{array}{cc}0.9 & 0.6 \\ 0 & 0.6\end{array}\right] \quad & \|A\|_{2}=1.1432 \\ & \|A\|_{F}=1.2369 \\ \rho(A)=0.9 & \|A\|_{1}=1.2 \\ & \|A\|_{\infty}=1.5\end{array}$

Right: Unit circle (blue), unit eigenvectors (red), some other unit vectores (different colours).
Bellow: Images of the unit circle and of the vectors using powers A, A^{2}, \ldots, A^{10}
(black dashed circle has radius $\rho(A)$, unit circle is blue dashed).

Example 2 - symmetric matrix

eigenvalues are always real, eigenvectors are orthogonal and parallel to axes of the elipse

$$
\begin{array}{ll}
A=0.3 \cdot\left[\begin{array}{rr}
3 & -1 \\
-1 & 2
\end{array}\right] \quad & \|A\|_{2}=1.0854 \\
& \|A\|_{F}=1.1619 \\
& \|A\|_{1}=\|A\|_{\infty}=1.2
\end{array}
$$

Example 3 - matrix with complex eigenvalues

$$
\begin{array}{ll}
A=0.8 \cdot\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] \quad & \|A\|_{2}=1.8422 \\
& \|A\|_{F}=2.1166 \\
\rho(A)=1.3856 & \|A\|_{1}=\|A\|_{\infty}=2.4
\end{array}
$$

