## Different metrics in 2D – an example for illustration

## The problem:

An owner of two small pizzerias at Denver (the left and the right black dot on the map) charges his customers for delivery of food; the amount depends on customer distance from the pizzeria.

## How should he measure the distance?



Assume he uses cartesian coordinates parallel to the edges of the map (North, East).

Consider four different scenarios of delivery of foods (limited to  $\approx 800$  m):

- 1. by drone, from the right pizzeria
- 2. by drone, from the left pizzeria,
- 3. by bike, from the right pizzeria,
- 4. by bike, from the left pizzeria.

## Answers

Delivery from the point  $A = [x_a, y_a]$  to the point  $B = [x_b, y_b]$ :

 $\bullet$  by drone (cases 1. and 2.) – use Euclidean norm

$$||A - B||_2 = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2}$$

• by bike from the right store (case 3.) – use column norm

$$||A - B||_1 = |x_a - x_b| + |y_a - y_b|$$

• by bike from the left store (case 4.) – use row norm

$$||A - B||_{\infty} = \max\{|x_a - x_b|, |y_a - y_b|\}$$