Importance of existence and uniquenes of exact solution

Example 1:

Use Euler method for equation $y^{\prime}=-\frac{|y|}{x^{2}}$ with initial condition $y(-1)=0.1$ and step sizes $h=0.48, h=0.71$ and $h=0.91$.

The domain of existence and uniqueness of exact solution: $(-\infty, 0) \times R \quad\left(-\frac{|y|}{x^{2}}\right.$ is Lipschitz. $)$ Numerical solution outside the domain is wrong:

Example 2:

Use Euler method for equation $y^{\prime}=\frac{y}{x^{2}}$ with initial condition $y(-1.7)=0.1$ and step sizes $h=0.48, h=0.71$ and $h=0.91$.

The interval of existence and uniqueness of exact solution: $(-\infty, 0)$
Exact solution: $y=c \mathrm{e}^{-\frac{1}{3 x^{3}}}$, where $c \approx 0.09344$

Left: Direction field Right: part of the exact solution in interval $(-0.5,-0.3)$

Numerical solution outside the interval $(-\infty, 0)$ is wrong:

On the right, the area close to origin is zoomed in.

