Computer graphics Lesson 1

Mgr. Nikola Pajerová
Department of Technical Mathematics
Faculty of Mechanical Engineering, CTU in Prague

Information

- Email: Nikola.Pajerova@fs.cvut.cz
office: KN:B-213
- Lectures - even week
- Tutorials - odd week (attendance counted)
- Moodle - B232-E012037 - Computer Graphics
- Textbook - Linkeová, I.: Curves and Surfaces for Computer Graphics
- Drawing aids - set-square/ruler, pencil, colour pencils, rubber, A4 squared paper (5 mm squared grid)
- Completion of subject - award of graded assessment + conditions

Curve types

1. Interpolation curves:

- definition points, definition polygon

2. Approximation curves:

- control points, control polygon

Ferguson cubic curve

- interpolation curve
- vector equation:

$$
\mathbf{P}(t)=F_{0}(t) \mathbf{A}+F_{1}(t) \mathbf{B}+F_{2}(t) \mathbf{a}+F_{3}(t) \mathbf{b}, t \in[0,1],
$$

basis functions are Hermit polynomials

$$
\begin{aligned}
& F_{0}(t)=2 t^{3}-3 t^{2}+1 \\
& F_{1}(t)=-2 t^{3}+3 t^{2} \\
& F_{2}(t)=t^{3}-2 t^{2}+t \\
& F_{3}(t)=t^{3}-t^{2}, t \in[0,1]
\end{aligned}
$$

a) Hermit polynomials

b) Ferguson cubic curve

Ferguson cubic curve

- properties:
- the initial point $\mathbf{P}(\mathbf{0})$ is the given point \mathbf{A}
- the terminal point $\mathbf{P}(1)$ is the given point \mathbf{B}
- tangent vector $\mathbf{P}^{\prime}(\mathbf{0})$ is the given tangent vector a
- tangent vector $\mathbf{P}^{\prime}(\mathbf{1})$ is the given tangent vector \mathbf{b}
- Example 2.1

Ferguson cubic curve

- Exercise 2.1 - compare shapes
- Exercise 2.2 - continuity and closed curve

