Computer graphics Lesson 2

Mgr. Nikola Pajerová
Department of Technical Mathematics
Faculty of Mechanical Engineering, CTU in Prague

Bézier curve of degree n

- approximation curve
- given: $n+1$ control points ordered in control polygon
- vector equation:

$$
\mathbf{P}(t)=\sum_{i=0}^{n} B_{i, n}(t) \mathbf{V}_{i}=B_{0, n}(t) \mathbf{V}_{0}+B_{1, n}(t) \mathbf{V}_{1}+\ldots+B_{n, n}(t) \mathbf{V}_{n}, t \in[0,1]
$$

coefficients are Bernstein polynomials of degree n

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=\frac{n!}{i!(n-i)!} t^{i}(1-t)^{n-i}, t \in[0,1], i=0, \ldots, n
$$

i corresponds to the associated control point n denotes the curve degree

- curve pass through the first and last control point

Bézier curve

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=\frac{n!}{i!(n-i)!} t^{i}(1-t)^{n-i}, t \in[0,1], i=0, \ldots, n
$$

- all Bernstein polynomials are non-negative
- sum of all Bernstein polynomials of the same degree is 1

Bézier curve

- cases:

1. given by one control point \rightarrow curve is degenerated to the point

$$
\mathbf{P}(t)=B_{0,0}(t) \mathbf{V}_{0}=\mathbf{V}_{0}, t \in[0,1]
$$

2. given by two control points \rightarrow curve is straight line segment

$$
\mathbf{P}(t)=B_{0,1}(t) \mathbf{V}_{0}+B_{1,1}(t) \mathbf{V}_{1}=(1-t) \mathbf{V}_{0}+t \mathbf{V}_{1}, t \in[0,1]
$$

3. given by three control points \rightarrow Bézier quadratic curve
$\mathbf{P}(t)=(1-t)^{2} \mathbf{V}_{0}+2 t(1-t) \mathbf{V}_{1}+t^{2} \mathbf{V}_{2}, t \in[0,1]$
4. given by four control points \rightarrow Bézier cubic curve

$$
\mathbf{P}(t)=(1-t)^{3} \mathbf{V}_{0}+3 t(1-t)^{2} \mathbf{V}_{1}+3 t^{2}(1-t) \mathbf{V}_{2}+t^{3} \mathbf{V}_{3}, t \in[0,1]
$$

Bézier curve

- Example 2.3
- Example 2.4

Properties of Bézier curve

- interpolates endpoints of the control polygon
- tangent vector $P^{\prime}(0)$ at V_{0} equals n-multiple of the first control polygon leg $\rightarrow P^{\prime}(0)=n \overrightarrow{V_{0} V_{1}}=n\left(V_{1}-V_{0}\right)$
- tangent vector $P^{\prime}(1)$ at V_{n} equals n-multiple of the first control polygon leg $\rightarrow P^{\prime}(1)=n \overrightarrow{V_{n-1} V_{n}}=n\left(V_{n}-V_{n-1}\right)$
- for all control points collinear \rightarrow Bézier curve is straight line segment (linear accuracy)

De Casteljau algorithm for Bézier curve

- geometric interpretation of Bernstein polynomials derivation
- for construction of curve point $P(\alpha), \alpha \in\langle 0 ; 1\rangle$
- process:

1. choose $\alpha \in\langle 0 ; 1\rangle$
2. divide all legs of control polygon in ratio $\alpha:(1-\alpha) \rightarrow$ get points A_{i}
3. connect points A_{i} by polyline to a new control polygon with $n-1$ legs
4. divide all legs of control polygon A_{i} in ratio $\alpha:(1-\alpha) \rightarrow$ get points B_{i}
5. connect points B_{i} by polyline to a new control polygon with $n-2$ legs
6. repeat these steps until the control polygon is only one line segment
7. divide the last leg in ratio $\alpha:(1-\alpha) \rightarrow$ get point $P(\alpha)$, the last leg is tangent line $P^{\prime}(\alpha)$, tangent vector is n-times the last leg

- Example 2.7

Continuity at common point of Bézier curve

- general: Bézier curves are independent to each other
- suppose two Bézier cubic curve:

$$
\begin{gathered}
\mathbf{P}(t)=B_{0,3}(t) \mathbf{V}_{0}+B_{1,3}(t) \mathbf{V}_{1}+B_{2,3}(t) \mathbf{V}_{2}+B_{3,3}(t) \mathbf{V}_{3}, t \in[0,1] \\
\mathbf{R}(s)=B_{0,3}(s) \mathbf{W}_{0}+B_{1,3}(s) \mathbf{W}_{1}+B_{2,3}(s) \mathbf{W}_{2}+B_{3,3}(s) \mathbf{W}_{3}, s \in[0,1]
\end{gathered}
$$

where points V_{i} are know and points W_{i} are unknown
\rightarrow express points W_{i} in terms of points V_{i} to connect these curves with C^{0}, C^{1} or C^{2} continuity

Continuity at common point of Bézier curve

1. continuity of the zeroth order $=$ function values of vector functions are equal
2. continuity of the first order = function values of the first derivatives of vector functions are equal
3. continuity of the second order = function values of the second derivatives of vector functions are equal
${ }^{*} C^{0}$ and C^{1} continuity conditions are valid for BC of any degree

Continuity at common point of Bézier curve

- Example 2.8
- Example 2.9
- Example 2.10

