Computer graphics Lesson 4

Mgr. Nikola Pajerová
Department of Technical Mathematics
Faculty of Mechanical Engineering, CTU in Prague

Coons cubic curve

- approximate curve, given points P_{0}, P_{1}, P_{2} and P_{3}
- vector equation:

$$
\mathbf{P}(t)=C_{0}(t) \mathbf{P}_{0}+C_{1}(t) \mathbf{P}_{1}+C_{2}(t) \mathbf{P}_{2}+C_{3}(t) \mathbf{P}_{3}, t \in[0,1]
$$

basis functions are Coons polynomials:

$$
\begin{aligned}
C_{0}(t) & =\frac{1}{6}(1-t)^{3}, \\
C_{1}(t) & =\frac{1}{6}\left(3 t^{3}-6 t^{2}+4\right), \\
C_{2}(t) & =\frac{1}{6}\left(-3 t^{3}+3 t^{2}+3 t+1\right), \\
C_{3}(t) & =\frac{1}{6} t^{3},
\end{aligned}
$$

Coons cubic curve

- properties:

1. values of Coons polynomials are <1 for any value of parameter $t \rightarrow$ curve does not pass through any given control point
2. point $P(0)$ lies at the "anticentroid" of triangle $P_{0} P_{1} P_{2}$ constructed with respect to control point P_{1}
3. point $P(1)$ lies at the "anticentroid" of triangle $P_{1} P_{2} P_{3}$ constructed with respect to control point P_{2}
4. tangent vectors in $P(0)$ and $P(1)$ are given by equations:

$$
\mathbf{P}^{\prime}(0)=\frac{1}{2} \overrightarrow{\mathbf{P}_{0} \mathbf{P}_{2}}=\frac{1}{2}\left(\mathbf{P}_{2}-\mathbf{P}_{0}\right)
$$

$$
\mathbf{P}^{\prime}(1)=\frac{1}{2} \overrightarrow{\mathbf{P}_{1} \mathbf{P}_{3}}=\frac{1}{2}\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right)
$$

Coons cubic curve

5. tangent line at the initial point intersects legs $P_{0} P_{1}$ and $P_{1} P_{2}$ at one third from control point P_{1} (points C, E and leg $P_{1} P_{2}$ intersects the tangent vector $P^{\prime}(0)$ at one third from point $P(0)$ (point E)
6. tangent line at the terminal point intersects legs $P_{1} P_{2}$ and $P_{2} P_{3}$ at one third from control point P_{2} (points F , D) and leg $P_{2} P_{3}$ intersects the tangent vector $P^{\prime}(1)$ at one third from point $P(1)$ (point D)

Coons cubic B-spline

- piecewise C^{2} continuous curve made of segments from Coons cubic curves with control points $P_{0}, P_{1}, P_{2}, P_{3}$ and $P_{1}, P_{2}, P_{3}, P_{4}$ etc.

Coons cubic B-spline

- given by a sequence of control points $P_{0}, P_{1}, \ldots, P_{n}, n \geq 4$ in space, a uniform B-spline curve of third degree $R(t)$ compounded from $n-2$ Coons cubic curves is called Coons cubic B-spline

$$
\begin{aligned}
\mathbf{R}_{0}(t) & =C_{0}(t) \mathbf{P}_{0}+C_{1}(t) \mathbf{P}_{1}+C_{2}(t) \mathbf{P}_{2}+C_{3}(t) \mathbf{P}_{3}, t \in[0,1], \\
\mathbf{R}_{1}(t) & =C_{0}(t) \mathbf{P}_{1}+C_{1}(t) \mathbf{P}_{2}+C_{2}(t) \mathbf{P}_{3}+C_{3}(t) \mathbf{P}_{4}, t \in[0,1], \\
& \vdots \\
\mathbf{R}_{n-3}(t) & =C_{0}(t) \mathbf{P}_{n-3}+C_{1}(t) \mathbf{P}_{n-2}+C_{2}(t) \mathbf{P}_{n-1}+C_{3}(t) \mathbf{P}_{n}, t \in[0,1]
\end{aligned}
$$

- closed or open
- Example 2.13

Coons cubic B-spline

- properties:
$>$ control polygon is created by at least five control points
$>$ If the last three control points are identical with the first three control points, i.e. $P_{n}=P_{2}, P_{n-1}=P_{1}, P_{n-2}=P_{0}$, Coons cubic B -spline is closed, otherwise it is open
$>$ does not pass through any control point of its control polygon
$>$ is created by $n-2 C^{2}$ continuously joined Coons cubic curves, endpoints of these curves are called knots of Coons cubic B-spline
> knots and tangent vectors at these knots can be constructed according to the properties

Coons cubic B-spline

- properties:
$>$ is a piecewise dfiened curve by partially overlapping control polygons (a change of position of one control point does not cause the change of whole Coons cubic B-spline, it influences the shape of those individual Coons cubic curves, of which vector equation contains the changing control point)
$>$ the domain of each individual Coons cubic curve is $t \in[0 ; 1]$ \rightarrow the curve is called a uniform curve or curve with a uniform parametrization
- Exercise 2.19

Clamped curve

- = Uniform clamped B-spline curve of 3th degree
- segments are created by Bézier cubic curves/Coons cubic curves
- initial point is „anticentroid" Q_{0} of triangle $\tilde{P}_{0} \tilde{P}_{1} \tilde{P}_{2}{ }_{2}$ constructed ${ }^{\text {w }}$ with respect to point \tilde{P}_{1}
- terminal point is „anticentroid" Q_{4} of triangle $\tilde{P}_{4} \tilde{P}_{5} \tilde{P}_{6}$ constructed with respect to point \tilde{P}_{5}
- $\quad P_{1}$ is at the first third of tangent vector q_{0}, on the leg $\tilde{P}_{1} \tilde{P}_{2}$ at one third from point \tilde{P}_{1}
- $\quad P_{1}$ is on the leg $\tilde{P}_{4} \tilde{P}_{5}$ at one third from
 point \tilde{P}_{4}

Clamped curve

- transformation formulas between control points P_{0}, \ldots, P_{n} of clamped curve and control points $\tilde{P}_{0}, \ldots, \widetilde{P}_{n}$ of open Coons cubic Bspline:

$$
\begin{aligned}
\mathbf{P}_{0} & =\mathbf{Q}_{0}=\frac{1}{6} \widetilde{\mathbf{P}}_{0}+\frac{2}{3} \widetilde{\mathbf{P}}_{1}+\frac{1}{6} \widetilde{\mathbf{P}}_{2}, \\
\mathbf{P}_{1} & =\frac{2}{3} \widetilde{\mathbf{P}}_{1}+\frac{1}{3} \widetilde{\mathbf{P}}_{2}, \\
\mathbf{P}_{i} & =\widetilde{\mathbf{P}}_{i}, i=2, \ldots, n-2, \\
\mathbf{P}_{n-1} & =\frac{1}{3} \widetilde{\mathbf{P}}_{n-2}+\frac{2}{3} \widetilde{\mathbf{P}}_{n-1}, \\
\mathbf{P}_{n} & =\mathbf{Q}_{n-2}=\frac{1}{6} \widetilde{\mathbf{P}}_{n-2}+\frac{2}{3} \widetilde{\mathbf{P}}_{n-1}+\frac{1}{6} \widetilde{\mathbf{P}}_{n}
\end{aligned}
$$

- first 2 and the last 2 curve segments are created by Bézier curves and all inner curve segments are created by Coons cubic curves (Coons cubic B-spline)

Clamped curve

- properties:
> from properties of Bézier cubic curve, Coons cubic curve and Coons cubic B-spline
$>$ for $\mathrm{n}=3$: only one curve segment \rightarrow Bézier cubic curve
$>$ for $n=4$: two curve segments \rightarrow Bézier cubic curves
$>$ for $\mathrm{n}=5$: three curve segments \rightarrow Bézier cubic curves

Clamped curve

- properties:
$>$ for $\mathrm{n}=6$: four curve segments \rightarrow Bézier cubic curves
$>$ for $\mathrm{n}=7$: five curve segments \rightarrow Bézier cubic curves, the middle curve segment is simultaneously Coons cubic curve

Clamped curve

- properties:
$>$ for $\mathrm{n}>7$: $\mathrm{n}-2$ curve segments \rightarrow first two and the last two curve segments are Bézier cubic curves, remaining $n-6$ internal curve segments are C^{2} continuously joined Coons cubic curves (open Coons cubic B-spline)
> for $\mathrm{n} \geq 3$ it is possible to create the clamped curve as a set of C^{2} continuously joined Bézier cubic curves

Clamped curve

- construction of knots of clamped curve for $\mathbf{n}>7$:

1. initial point Q_{0} is equal to the first control point P_{0}
2. terminal point Q_{n-2} is equal to the last control point P_{n}
3. do not divide the first and the last leg of control polygon
4. divide the second and the next-to-last leg of the control polygon in halves \rightarrow points 1 and $(n-3)^{*}$
5. divide the remaining internal legs in thirds \rightarrow points $1^{*}, 2$, $2^{*}, \ldots$
6. construct straight line segments $11^{*}, 22^{*}, \ldots$
7. knots Q_{1}, Q_{2}, \ldots lie at the centers of straight line segments $11^{*}, 22^{*}, \ldots$

Clamped curve

- Exercise 2.26
- Exercise 2.27 (try yourself)

